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Part. 1. Research Axes 2013 - 2016

Into reality Into abstraction
Poppy Inria project Flowers

Simulating Reality Realistic Numerical Models

3D mesh of a microstructure generated by IceSL
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Part. 1. Application Domains 

Computational Physics

Bose-Einstein Condensate

ANR BECASIM cooperation with physicists and mathematicians



From Graphics to Fabrication
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Part. 2 From Graphics to Fabrication

Coherent Parallel Hashing

Garcia, Lefebvre, Hornus, Lasram

SIGGRAPH Asia 2011



Part. 2 From Graphics to Fabrication

A runtime cache for interactive procedural modeling

Reiner, Lefebvre, Diener, Garcia, Jobard, Dachsbacher

SMI 2012



Part. 2 From Graphics to Fabrication

Visualization of Bose-Einstein condensates with IceSL

ANR BECASIM cooperation with physicists and mathematicians
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Part. 2 From Graphics to Fabrication

Make it stand, Prevost, Whiting, Lefebvre, Sorkine, SIGGRAPH 2012

Clean Color, Hergel, Lefebvre, Eurographics 2014

Bridge the gap, Dumas, Hergel, Lefebvre, SIGGRAPH 2014



Part. 2 From Graphics to Fabrication

Reparative Surgery toy example



From Geometry Processing to

Applied Mathematics
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Part. 3 From Geometry Processing to Applied Math.

Finite Element Modeling ?

How ?  

Exotic representation (Dexels)  



Optimize a Voronoi diagram from the point of view of sampling regularity

(quantization noise power)

F=

Vor(i) 

2

dxxi - x
i

Minimize

Theorem: F is of class C2 [Liu, Wang, L, Yan, Lu, ACM TOG 2008]
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Anisotropic mesh:  

* shape can vary

* size can vary

Part. 3 From Geometry Processing to Applied Math.



The input: anisotropy field

Specifies shape and orientation

Anisotropy:

of distances and angles.

anisotropic 

distance

{ q | dist(p,q) = 1 }
This is a circle !

Part. 3. Anisotropy



Part. 3. Anisotropy

The dot product: a geometric tool

Anisotropic distance

between p and q w.r.t. G

lG(C) =       v(t)t G(t) v(t) dt p

q

t=0

1

dG(p,q) = (anisotropic) length of 

shortest curve

that connects p with q  



Part. 3. Anisotropy

{ q | dG(p,q) = 1 }

p

The input: anisotropy field

G(x,y) =    a(x,y) b(x,y)

b(x,y) c(x,y)



The result: triangles are 
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The result: triangles are 

Q: How to compute 

an Anisotropic 

Centroidal Voronoi

Tessellation ?

Part. 3. Anisotropy
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The key idea  

This example:

Anisotropic mesh in 2d            Isotropic mesh in 3d
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Part. 3 Journey in the 6th dimension

The key idea  

Replace anisotropy with additional dimensions

Note: more dimensions may be needed

How many ?   

Maximum: depending on desired smoothness 

C1 : 2n                                    [Nash-Kuiper]

Ck : bounded by n(3n+11)/2   [Nash, Nash-Moser]



Part. 3 Journey in the 6th dimension

A 6d embedding for curvature-adapted meshing

The Gauss map:

x

y

z

Nx

Ny

Nz



Part. 3 Journey in the 6th dimension

A 6d embedding for curvature-adapted meshing

Vorpaline meshing software



Part. 3 Journey in the 6th dimension

Anisotropy through high-dim. embedding

3D anisotropic Voronoi diagram and anisotropic Vector Quantization

Anisotropy represented by a background mesh embedded in 6D
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Part. 3 Journey in the 6th dimension

New predicates

Predicate Construction Toolkit [PCK] make it easy for everybody

Automatically generated



Part. 3 Optimal Transport

Gaspard Monge - 1784

ANR TOMMI Workshop



Part. 3 Optimal Transport some references

A Multiscale Approach to Optimal Transport, 

Quentin Mérigot, Computer Graphics Forum, 2011

Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, 

and Discrete Monge-Ampere Equations

Xianfeng Gu, Feng Luo, Jian Sun, S.-T. Yau, ArXiv 2013

Minkowski-type theorems and least-squares clustering

AHA! (Aurenhammer, Hoffmann, and Aronov), SIAM J. on math. ana. 1998

Topics on Optimal Transportation, 2003

Optimal Transport Old and New, 2008

Cédric Villani

Yann Brénier, Jean-David Benamou



Part. 3 Optimal Transport problem

problem:

Find a transport map T that minimizes C(T) = || x T(x) ||2 d (x)
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Part. 3 Optimal Transport semi-discrete

The pre-images of the Diracs define a partition of 

This partition is a power diagram (more on this below)



Part. 3 Optimal Transport the AHA paper

Theorem [Aurenhammer, Hoffmann, Aronov 98], [Brenier91]: 

given a measure with density, a set of points (S), a set of positive coefficients 

i d (x), it is possible to find the weights w such that the map TS
W is 

an optimal transport map between and i (si)

Pow(si) d (x) =  i



Part. 3 Optimal Transport the algorithm

The [AHA] paper summary:

The optimal weights minimize a convex function

The gradient of this convex function is easy to compute 

Note: the weight w(s) correspond to the Kantorovich potential (x)

Monge-

The algorithm:

Summary:

The algorithm computes the weights wi such that the power cells associated with

the Diracs correspond to the preimages of the Diracs.
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This means that one can move (and possibly deform)

a power diagram simply by changing the weights ?



Part. 3 Optimal Transport ???

Wait a minute: 

This means that one can move (and possibly deform)

a power diagram simply by changing the weights ?

Reminder: Power diagram in 2d = intersection between 

Voronoi diagram in 3d and IR2

hi = sqrt(wmax wi)

Height of point i Weight of point i
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Part. 3 Power Diagrams & Transport

hi
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Part. 3 Optimal Transport 2D example

Numerical Experiment: Splitting a disk



Part. 3 Optimal Transport 2D example

Numerical Experiment: Splitting a disk



Part. 3 Optimal Transport 2D example

Numerical Experiment: Splitting a disk



Part. 3 Optimal Transport 2D example

Numerical Experiment: Splitting a disk



Part. 3 Optimal Transport 2D example

Numerical Experiment: Splitting a disk
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Numerical Experiment: Splitting a disk
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Part. 3 Towards FWD (Fast Wasserstein Distance)



Part. 3 Relation with Vector Quantization

A numerical algorithm for L2 optimal tranport in 3D ESAIM Math. Analysis and Modeling



Part. 3 Self Organizing Optimal Transport Maps

Voxels

Splines



Future Works
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Part. 4 Future Works in Fabrication

Guiding principles:

(1) Make it easy for everybody !

(2) Integrate more and more fabrication constraints in modeling



Part. 4 Future Works in Fabrication

[ACM SIGGRAPH 2016]



Part. 4 Future Works in Applied Mathematics

Discrete Elements from Equations to Programs

Short term: Hex-dominant meshing



Part. 4 Future Works in Applied Mathematics

Discrete Elements from Equations to Programs

Short term: Hex-dominant meshing

Finite Elements function basis for non-conforming meshes (submitted)
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Part. 4 Future Works in Applied Mathematics

Optimization of frame fields for hex-dominant meshing

How to interpolate frame fields ?

A natural idea:

Frame field = 8 Dirac masses on the shere

Optimal Transport for interpolation, barycenters

Not smooth enough

the same symmetries.

Symmetries of platonic solids reproduced with sums

of Spherical Harmonics.



Part. 4 Future Works in Applied Mathematics

Optimization of frame fields for hex-dominant meshing

How to interpolate frame fields ?

First results are encouraging

(scales-up well)

[ACM Transactions on Graphics 2016]



Part. 4 Future Works in Applied Mathematics

Longer term: from the principle of least action to optimal 

transport

JKO scheme (Jordan, Kinderlehrer, Otto)

Benamou, Carlier, Merigot, Oudet arXiv 1408.4536 

EXPLORAGRAM project (INRIA exploratory project)

MAGA project (ANR project submitted)



Part. 4 Future Works in Applied Mathematics

Geometric Predicates: How can we easily translate geometric

predicates into computer programs ? How can we certify their

validity ? Can we invent programming tools ?

sqrt(), root_of Voronoi diagram of 

Segments in 3d doable ?



Highlights
ERC StG GOODSHAPE Optimal Sampling  

ERC PoC VORPALINE Remeshing Software 

ERC StG SHAPEFORGE 3D printing made easy

ERC PoC ICEXL 3D printing scaling up

IceSL software 

First algorithm that computes aniso. Voro. diagram and 

semi-discrete Optimal Transport in 3d  (+ Predicate Cons. Kit) 

Integration of research results in ALICE !

SHAPEFORGE - Dexels GOODSHAPE/VORPALINE
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Thank you !


