

ALICE

Evaluation 2018

Bruno Lévy ALICE Géométrie & Lumière CENTRE INRIA Nancy Grand-Est

Overview

Introduction

• The team and its history

Research Axes

- Geometry Processing
- Computer-Aided Fabrication
- Highlights
- Perspectives

Innía

ALICE Geometry and Light

Inception: 2004 Inria project: 2006

ALICE Geometry and Light

Inception: 2004 Inria project: 2006 Outcomes Automatic Texture Mapping

Funding helped developing and structuring the team thematically

Axis 1: Geometry Processing Axis 2: Computer Aided Fabrication

Axis 1: Geometry Processing

Ínría

Axis 1 - Geometry Processing: Motivations Computer Graphics

Ínría

Axis 1: Geometry Processing Motivations *Computer Graphics*

(nría_

Axis 1 - Geometry Processing: Motivations Computational Physics: to design

Inría

Axis 1 - Geometry Processing: Motivations Computational Physics: to design

Ínría

Axis 1: Geometry Processing: Motivations Computational Physics: to understand

Data: N-body simulation, R. Mohayaee, Instit. Astrophys. Paris

Axis 1: Geometry Processing: Motivations

Computational Fluid Dynamics Vision 2030 Study NASA report, 2014

Today, the generation of suitable meshes for CFD simulations about complex configurations constitutes **a principal bottleneck** in the simulation workflow process. Often the mesh generation phase constitutes **the dominant cost in terms of human intervention**.

Axis 1: Geometry Processing: Motivations Meshing is a major difficulty

Axis 1: Geometry Processing: Motivations Meshing is a major difficulty

Axis 1: Geometry Processing: Motivations Meshing is a major difficulty

Ínría

<u>LpCVT cited in [2018 Aerospace Sciences Meeting], used in NASA AMES</u> [Ekelschot, Ceze, Garai, Murman] (anisotropic mesh adaptation for flow sim.)

Colored: non-hexahedral elements

Axis 1: Geometry Processing

Selected result: automatic hexahedral dominant meshing

Innia

[ACM TOG 2016] 3D Periodic Global Parameterization

Local parameterization charts, periodic coords.

Recognizing hexahedra in tet meshes.

Axis 1: Geometry Processing non-conventional discretizations

Inría

Axis 1: Geometry Processing non-conventional discretizations

Axis 1: Geometry Processing Selected result: Anisotropic Voronoi Diagrams

[SIGGRAPH 2018]

Axis 1: Geometry Processing Selected result: parallel Voronoi on the GPU

[Siggraph ASIA 2018]: Fast Voronoi diagrams on the GPU

Ínría

Tracking interfaces Non-mixing fluids Free surface

[Gallouet-Merigot] [De-Goes-Desbrun]

Axis 1: Non-conventional discretizations Lagrangian simulation – Lagrangian meshes

How can we enforce incompressibility ? (i.e. constant volume of the cells)

[Math. Model. and Analysis] A num. algo. for L2 optimal transport in 3D

[Computer & Graphics] Notions of optimal transport and how to implement them

How can we enforce incompressibility ? (i.e. constant volume of the cells)

There is a theorem we can use ! [AHA], [Gangbo McCann], [Brenier] : we can prescribe the volume of the cells in a power diagram (**optimal transport**)

Axis 1: Non-conventional discretizations Lagrangian simulation – Lagrangian meshes

Axis 1: Non-conventional discretizations Lagrangian simulation – Lagrangian meshes

Axis 1: Non-conventional discretizations Lagrangian simulation – Lagrangian meshes From 2014 ALICE evaluation report

Recommendations / Measure of success:

Numerical solutions to problems considered impossible to solve (SIC!)

Y. Brenier, ¹ U. Frisch, ^{2,3} M. Hénon, ² G. Loeper, ¹ S. Matarrese, ⁴ R. Mohayaee, ² A. Sobolevskii^{2,5}

Reconstruction of the early Universe as a convex optimization problem 2003

Inría

Y. Brenier, ¹ U. Frisch, ^{2,3*} M. Hénon, ² G. Loeper, ¹ S. Matarrese, ⁴ R. Mohayaee, ² A. Sobolevskii^{2,5}

Reconstruction of the early Universe as a convex optimization problem 2003

Ínría

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= (\mathbf{F} - \nabla p) \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\ \Delta p &= \nabla \cdot (\mathbf{F} - (\mathbf{u} \cdot \nabla) \mathbf{u}) \end{cases}$$

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= (\mathbf{F} - \nabla p) & \longleftarrow \mathbf{Newton} \ \mathbf{II} \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\ \Delta p &= \nabla \cdot (\mathbf{F} - (\mathbf{u} \cdot \nabla) \mathbf{u}) \end{cases}$$

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= (\mathbf{F} - \nabla p) & \longleftarrow \text{Newton II} \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 & \longleftarrow \text{Mass} \\ \Delta p &= \nabla \cdot (\mathbf{F} - (\mathbf{u} \cdot \nabla) \mathbf{u}) \end{cases}$$

Poisson equation for the pressure

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= (\mathbf{F} - \nabla p) \text{ Incompressible}\\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \Delta p &= \nabla \cdot (\mathbf{F} - (\mathbf{u} \cdot \nabla) \mathbf{u}) \end{cases}$$

$$\begin{cases} \frac{\partial \mathbf{u}'}{\partial \tau} + (\mathbf{u}' \cdot \nabla) \mathbf{u}' &= -\frac{3}{2\tau} (\mathbf{u}' + \nabla \varphi) \\ \frac{\partial \rho'}{\partial \tau} + \nabla \cdot (\rho' \mathbf{u}') &= 0 & \text{Self-gravitating} \\ \Delta \varphi &= \frac{\rho' - 1}{\tau} & \text{matter + relativity} \end{cases}$$

Time = Now

"Not reasonable to do for more than 100 000 points even in the future O(n3) !!"

Time = Now

"Not reasonable to do for more than 100 000 points even in the future O(n3) !!"

OK, let's do 16 million points

Time = BigBang (- 13.7 billion Y)

"Time-warped" map of the universe

Cosmic Microware Background: "Fossil light" emitted 380 000 Y after BigBang and measured now

Coop. with U. Paris Sud, MOKAPLAN, Institut d'Astrophysique de Paris, Obs. de Paris

"Time-warped" map of the universe

Cosmic Microware Background: "Fossil light" emitted 380 000 Y after BigBang and measured now

Do they match ?

"Time-warped" map of the universe

Coop. with U. Paris Sud, MOKAPLAN, Institut d'Astrophysique de Paris, Obs. de Paris

Axis 2: Computer-Aided Fabrication

Innía

Procedural foams

[SIGGRAPH 2016]

Ínría

Procedural foams

[SIGGRAPH 2017]

Ínría

Axis 2: Fine control of the printer

"Antialiasing"

[CAD J.]

Axis 2: Fine control of the printer

"Antialiasing"

Highlights / Impact

Ínría

Highlights:

Software Heritage Event, Unesco, with François Hollande and Irina Bokova

Highlights:

Software Heritage Event, Unesco, with François Hollande and Irina Bokova

Software Heritage Event, Unesco, with François Hollande and Irina Bokova

> Trophee modeled with IceSL, remeshed with Vorpaline, sliced with IceSL

Highlights:

Software Heritage Event, Unesco, with François Hollande and Irina Bokova

Ínría

Regularized MC 4.6 M facets

Highlights: IceSL event in Paris

Inría

Highlights: Books and Courses

[Mathematical Modeling and Analysis J. 2015] 50 citations Numerical Optimal Transport, SGP 2018

Part. 2 Optimal Transport - Kantorovich

Monge's problem:

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

Kantorovich's problem (1942):

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = d\nu(y)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = d\mu(x)$

that minimizes
$$\iint_{\mathbf{X} \times \mathbf{Y}} || \mathbf{x} - \mathbf{y} ||^2 d\mathbf{y}(\mathbf{x}, \mathbf{y})$$

Highlight: Books and Courses

Design, Representation and Processing for Additive Manufacturing, Morgan & Claypool

Informatique Mathématique – une photographie en 2018 (chapter course on numerical geometry)

Generalized Barycentric Coordinates in Computer Graphics, CRC Press

Informatique Mathématique Une photographie en 2018

Emmanuel Jeandel et Laurent Vigneron (éd.)

Highlights: Software

OpenSource (BSD):

Geogram/Graphite

More than 58 000 downloads (since 2014) Houdini (uses Predicate Construction Kit) Trimble (3D scanning company) Chevron Petroleum R&D

Proprietary:

. .

Start-up creation project **Vorpaline/MeshSpace**

Dassault Systems, Total Ansys (eval license)

IceSL / IceXL

Highlights: Software

OpenSource (BSD):

Geogram/Graphite

More than 58 000 downloads (since 2014) Houdini (uses Predicate Construction Kit) Trimble (3D scanning company) Chevron Petroleum R&D

lume style

Filte

Proprietary:

. .

Start-up creation project Vorpaline/MeshSpace

Dassault Systems, Total Ansys (eval license)

IceSL / IceXL

Start-up creation (results of older ERC StG+POC) Inria support, ATT action Wan-Chiu Li Generative Design + Phones

:MeshGrobMeshCommands::display statistics) starting

(OGF::MeshGrobMeshCommands::display statistics) Elapsed time: 0.09

(FP64) nb_v:49549 nb_e:0 nb_f:24113 nb_b:0 tri:0 dim:3 Hybrid - nb_cells:78000 Tet:33806 Hex:32913 Psm:0 Pmd:0 Cnx:11281

Attributes on vertices: point[3]

🔙 input

o-[timing

o-[timing

o-[Mesh

Ínría

Perspectives

From 2014 ALICE evaluation report

Recommendations :

Create a new group on computer fabrication Focus the other group on fundamentals

Perspectives for Axis 1: Geometry Processing Current situation: Garbage in – Garbage out

Perspectives for Axis 1: Geometry Processing

Abstract Shape Representation – ,google translate' for shapes

Perspectives for Axis 1: Geometry Processing From hex-dominant to full-hex, the last miles....

Singularities – Modular meshing

Perspectives for Axis 1: Geometry Processing

Texture Mapping Reloaded

Automatic Mesh Segmentation New Ph.D. thesis, Coop. with Polygonal Design

UNFOLD3D® 2018 UV WIZARD®

Polygonal Design ... SciTech O. committee

Perspectives for Axis 1: Geometry Processing

Texture Mapping Reloaded

Automatic Mesh Segmentation New Ph.D. thesis, Coop. with Polygonal Design

UNFOLD3D® 2018 UV WIZARD®

New Features 下

Continuous Texture Mapping Cⁿ texture space [EGSR 2010].

Thank you for your attention !

