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Abstract

This article presents a new method to optimally partition a geo-
metric domain with capacity constraints on the partitioned regions.
It is an important problem in many fields, ranging from engineer-
ing to economics. It is known that a capacity-constrained partition
can be obtained as a power diagram with the squared L2 metric.
We present a method with super-linear convergence for comput-
ing optimal partition with capacity constraints that outperforms the
state-of-the-art in an order of magnitude. We demonstrate the effi-
ciency of our method in the context of three different applications
in computer graphics and geometric processing: displacement in-
terpolation of function distribution, blue-noise point sampling, and
optimal convex decomposition of 2D domains. Furthermore, the
proposed method is extended to capacity-constrained optimal par-
tition with respect to general cost functions beyond the squared Eu-
clidean distance.

Keywords: centroidal power diagram, displacement interpolation,
convex decomposition, blue noise

Concepts: •Computing methodologies→ Computer graphics;

1 Introduction

The central theme of the present paper is to apply and extend the
notion of power diagram to computing optimal partition of a geo-
metric domain with capacity constraints. A partition of a geometric
domain is a collection of disjoint constituent parts whose union is
equal to the whole domain. A partition is said to be optimal if all
its partitioned regions, also called cells, have compact shapes with
respect to some specified cost kernel that defines the cost function.
Here “compactness” can be roughly measured by the isoperimetric
quotient. Capacity constraints on a partition mean that each cell of
the partition has a specified size, measured in volume (or area in
2D) or mass. Hence, an optimal partition with capacity constraints
is a partition such that its cells have compact shapes as well as sizes
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equal to some specified quantities, unlike the optimal mass trans-
port [Santambrogio 2015] that concentrates on capacity constraints
regardless of shape compactness or the centroidal Voronoi tessella-
tion [Du et al. 1999; Liu et al. 2009] that considers the opposite.

Finding an optimal partition by some criteria is a central issue in
many applications. Optimal partitions, with or without capacity
constraints, are used in computer graphics and geometric comput-
ing for point sampling [de Goes et al. 2012], information visual-
ization [Balzer et al. 2005], shape segmentation [Lu et al. 2007],
shape matching [Su et al. 2015], area-preservation mapping [Zhao
et al. 2013] and mesh generation [Du et al. 1999; Liu et al. 2009].
The optimal partitioning problem with capacity constraints is also
studied in engineering and economics for optimal resource location
or provision of services. For example, it appears as the optimal
coverage problem in robotics and sensor networks [Cortés 2010;
Patel et al. 2014], the pattern formation problem in material sci-
ence [Bourne et al. 2014], and the land consolidation problem in
agriculture [Borgwardt et al. 2014].

The contribution of this paper is twofold.

1. An L-BFGS method with empirically superlinear conver-
gence is developed for computing capacity-constrained cen-
troidal power diagram, assuming the squared Euclidean dis-
tance as the cost kernel. We show its superiority to previous
method and validate it in two applications: displacement in-
terpolation of function distribution and blue-noise point sam-
pling. Furthermore, the method is extended to computing op-
timal capacity-constrained partition with a general cost func-
tion;

2. Based on the centroidal power diagram, an effective method is
developed for decomposing a 2D polygonal region into con-
vex and compact cells with capacity constraints.

2 Related Work

Voronoi Diagram & Power Diagram The Voronoi diagram is a
partition of a given domain Ω ⊂ Ed into regions based on the
straight-line distance to a set of points {xi ∈ Ω}ni=1 (called sites or
generators), where xi dominates the subregion

Ωi : {x ∈ Ω | ‖x− xi‖ ≤ ‖x− xj‖, j 6= i},

which is called the Voronoi cell of the site xi. A power diagram
is defined as an extension of Voronoi diagrams, where each site xi
has an associated coefficient (called a “weight”) and dominates the
subregion

Ωi : {x ∈ Ω | ‖x− xi‖2 − wi ≤ ‖x− xj‖2 − wj , j 6= i}.
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Ωi is called the power cell of the site xi. The power diagram re-
duces to the Voronoi diagram when all the weights are equal [Au-
renhammer 1987; Okabe et al. 1992].

Centroidal Voronoi Tessellation (CVT) A centroidal Voronoi
tessellation (CVT) of a set of sites X = {xi}ni=1 is a special
Voronoi diagram for which each site xi coincides with the centroid
(i.e. the center of mass) of its Voronoi cell Ωi [Du et al. 1999]. Al-
ternatively, a CVT can be also defined as a stationary point of the
following objective function:

Q(X) =

n∑
i=1

∫
Ωi

||x− xi||2ρ(x)dσ, (1)

where ρ(x) is a C1-smooth density function on the whole domain
Ω.Domain partition using CVT yields convex polyhedral cells (bar-
ring those abutting boundaries) that have compact shapes and sim-
ilar sizes, assuming that ρ(·) is uniform. Due to these properties,
CVT is widely used for computing optimal partitions in various ap-
plications [Lu et al. 2014; Zhou et al. 2015], and in some cases even
for optimal partition with capacity constraints [Balzer and Heck
2008; Chen et al. 2012; Li et al. 2010]. However, it is known that
the class of partitions given by the Voronoi diagram is too restrictive
to properly accommodate capacity constraints [Zhang et al. 2016].
A prevailing method for computing CVT is Lloyd’s method, which
behaves as a gradient-descent method and thus converges linearly.
A quasi-Newton method for computing CVT is proposed in [Liu
et al. 2009] that is based on the limited-memory BFGS technique
and is shown to demonstrate super-linear convergence in practice.

Optimal Mass Transport (OMT) The optimal mass transport
(OMT) was formalized by the French mathematician Gaspard Mon-
ge [1781] who studied the most economical way of moving soil
from one area to the other and introduced the theory in terms of
minimizing the L1 norm of the distance transported. The prob-
lem of minimizing L2 cost whose kernel is the squared distance
(note that the square root of the minimum L2 cost is called the
2-Wasserstein metric), however, takes on additional structure and
can be expressed as the fully nonlinear degenerate elliptic Monge-
Ampère equation. In 1949, Kantorovich proved the existence and
uniqueness of the optimal transport plan and showed how Mon-
ge’s problem is connected to linear programming [Kantorovich and
Gavurin 1949]. The Monge-Kantorovich optimization technique
has been studied in a wide range of research fields in the past two
decades, including imaging, adaptive meshing, geophysical fluid
dynamics, and cosmology.

It is shown in [Pogorelov 1994], [Gangbo and Cann 1996] (exam-
ple 1.6) and [Aurenhammer et al. 1998] (or as a direct consequence
of [Brenier 1991]) that for the semi-discrete OMT (from a discrete
probability distribution function to a continuous one), the class of
partitions parameterized by the power diagram provides the prop-
er representation to accommodate capacity constraints in the fol-
lowing sense. Given a set of fixed sites in a domain, there exists
a unique set of weights (up to an additive constant) such that the
power cells, which are determined by the given sites and the asso-
ciated weights, satisfy the specified capacity constraints and mini-
mize the sum of least squares costs of all the cells. Here, the least
squares cost of the cell Ωi associated with a site xi is defined to be∫

Ωi
‖x − xi‖2ρ(x)dσ. This means that we just need to look for

the capacity-constrained partition within the set of power diagram-
s with different weighting schemes, rather than having to search in
the set of arbitrary partitions of the domain, which obviously cannot
be parameterized by a finite number of parameters.

Centroidal Power Diagram (CPD) In this paper, we are interest-
ed in computing the optimal partition of a geometric domain with
specified capacity constraints. Similar to the conventional OMT
problem, the solution to such a capacity-constrained optimal parti-
tion problem with the least squares cost function can be represented
by a power diagram [Balzer et al. 2009]. More specially, the solu-
tion is given by a centroidal power diagram (CPD) which is a spe-
cial power diagram in which each site coincides with the centroid of
its power cell. Interestingly, the weights of the power diagram ex-
actly correspond to the degrees of freedom required to account for
capacity constraints. However, one should notice that the relation
between the weights and the capacities of the cells is non-trivial (in
this context, the term “weight” is misleading, they are completely
different from the masses of the cells).

CPD was used for blue-noise sampling in computer graphics. In nu-
merical implementation, Balzer et al. [2009] proposed several iter-
ative schemes to compute capacity-constrained optimal partitions,
including the method based on pixel-based clustering and the meth-
ods that enforce capacity constraints on the Voronoi diagram as well
as the power diagram. These methods are easy to implement. But
because they update only one single pixel or site in each iteration,
the methods have very slow convergence and low efficiency. Lat-
er, a Lloyd-like method that repeatedly moves each site to the mass
center of its cell is proposed to compute CPD for blue-noise sam-
pling [de Goes et al. 2012], which has only linear convergence.

The above discussions naturally lead to two questions. First, is it
possible to develop an efficient method that outperforms these ex-
isting methods? Second, remarking that the least squares cost func-
tion is in fact the squared L2 metric, we want to know whether the
new numerical method is able to deal with the CPD problem with
a general cost. We will give positive answers to both questions in
this paper.

3 Capacity-Constrained Optimal Partition

3.1 Problem Formulation

We first recall the notions used for a power diagram in Ed, d-
dimensional Euclidean space. Let Ω ⊂ Ed be a convex, closed,
bounded and connected domain. Let X = {xi}ni=1 ⊂ Ω be a set
of points, called sites, with its associated weights {wi}ni=1 ⊂ R.
Then the power diagram induced by the weighted points (xi, wi)
is the collection of convex polytopes, or cells, PD = {PDi}ni=1,
where PDi = {x|‖x− xi‖2 −wi ≤ ‖x− xj‖2 −wj ,∀j, j 6= i}.
The restriction of the power diagram PD to the domain Ω induces
a partition of Ω, denoted by PDΩ = {PDi ∩ Ω}ni=1.

Now consider partitioning a domain Ω in Euclidean space Ed into
a set of n regions R = {Ri}ni=1 in a capacity-constrained man-
ner. Let X = {xi}ni=1 ⊂ Ω denote n given points, also called
sites, with associated capacity constraints ci > 0, i = 1, 2, . . . , n.
We define the least squares cost of each region Ri, given by xi,
to be

∫
Ri
‖x − xi‖2ρ(x)dσ, where ρ(x) is a C1-smooth den-

sity function on Ω. The capacity constraint here requires that
|Ri| ≡

∫
Ri
ρ(x)dσ = ci, i = 1, 2, ..., n, that is, the capacity (i.e.

area or volume) of each region Ri matches the constraint ci. (Of
course,

∑
i ci is assumed to be equal to |Ω| ≡

∫
Ω
ρ(x)dσ.) Then

the problem of capacity-constrained optimal partition is to find the
partitions Ri and the sites xi such that the total cost

Q(X,R) =

n∑
i=1

∫
Ri

||x− xi||2ρ(x)dσ (2)

is minimized, subject to the constraints |Ri| = ci, i = 1, 2, ..., n.



In the case of the L2 cost, it follows from [Aurenhammer et al.
1998] that the solution (X∗, R∗) = arg minQ(X,R) exists and
is given by a power diagram; See [Pogorelov 1994] and [Gangbo
and Cann 1996] for a proof, as well as the derivations in [Gu et al.
2013]. Aurenhammer [1998] further showed that the optimal power
diagram can be found by extremizing

F (X,W ) =

n∑
i=1

∫
PD(W )i

||x−xi||2ρ(x)dσ−
n∑
i=1

wi(|PD(W )i|−ci),

(3)
where PD(W )i (or PDi) is a power cell dominated by xi. A
key observation made in [Aurenhammer et al. 1998] is that, when
the sites X in F (X,W ) are fixed, their weights can be computed
as a maximizer of a concave function to make the cells of the re-
sulting power diagram meet the capacity constraints |PDi| = ci,
i = 1, 2, ..., n. This observation leads to a Lloyd-like method
[Cortés 2010; de Goes et al. 2012] for minimizing the objective
function F (X,W ) in Eqn. (3), i.e., alternatively optimizing the
weights to meet the given capacity constraints and moving the sites
to their respective mass centers. We will discuss these numerical
techniques in detail in the next section, and introduce a new method
that better exploits the derivatives of the objective function, result-
ing in a faster convergence.

3.2 Partition with General Cost Functions

Given a general distance cost kernel d(x, y), where x, y ∈ Ω ⊂
Ed, a generalized power diagram (also called a Laguerre diagram)
of Ω with the weighted sites {(xi, wi)}ni=1 is defined to be the col-
lection of cells GD = {GDi}ni=1, where GDi = {x|d(x, xi) −
wi ≤ d(x, xj) − wj , ∀j, j 6= i}. When d(x, y) is the squared
distance, the generalized power diagram reduces to the traditional
power diagram whose cells are convex polytopes. However, with
a general cost, the cells GDi are not necessarily convex and their
boundaries are curves or curved surfaces rather than straight lines
or planes.

Let µ denote a measure with non-vanishing density ρ(.), supported
by the domain Ω. Suppose that each site xi has capacity constraint
ci > 0, such that

∑n
i ci = |Ω| ≡

∫
Ω

dµ, which is the total mass
of the measure µ. Again, let d(x, y) denote a distance cost between
any two points x and y in Ω. Let R = {Ri}ni=1 denote a partition
of Ω, that is, ∪Ri = Ω and Ri ∩ Rj = ∅, ∀i 6= j. Define the cost
of the partition R with respect to the sites X = {xi}ni=1 as

Q(X,R) =

n∑
i=1

∫
Ri

d(x, xi)dµ. (4)

In what follows, we support that the distance d(x, y) satisfies the
twist condition, i.e. ∇xd(x0, y) is one-to-one ∀x0, which en-
sures the existence and uniqueness of the optimal transport plan
(see e.g. [McCann and Guillen 2010] p. 10 and [Santambrogio
2015]). Then the capacity-constrained optimal partition problem
is to find the sites X∗ and partition R∗ that minimize the function
Q(X,R) subject to the capacity constraints ci = |Ri| ≡

∫
Ri

dµ,
i = 1, 2, . . . , n. The difference between this definition of the gen-
eral setting and the previous simple setting of the squared L2 cost
is that here Ω may be a curved surface and that d(x, y) is a general
cost kernel.

Next we shall show that the optimal partitionR∗ with capacity con-
straints assuming a general cost functionQ(X,R)) can be found by
only considering the candidates of extended power diagrams where
each region (possibly with curved boundaries) is associated with a
weight. This is a natural extension from [Aurenhammer et al. 1998;
Santambrogio 2015]. Its proof is given in the appendix.

Theorem 1: For any fixed sites X = {xi}ni=1, the capacity-
constrained partition R = {Ri}ni=1 of the domain Ω that mini-
mizes the cost function in Eqn. (4) is the one such that the bound-
ary of any two adjacent regions Ra and Rb, which are associated
with the sites a and b in X respectively, is defined by the equation
d(x, a)− wa = d(x, b)− wa for some constants wa and wb.

Similar to the treatment in [Aurenhammer et al. 1998] for the case
of the least squares cost function, we build a new objective function
to accommodate the optimal partition according to the Lagrangian
Multiplier Theorem:

F (X,W ) =

n∑
i=1

∫
GD(W )i

d(x, xi)dµ−
n∑
i=1

wi(|GD(W )i|−ci).

(5)
It can be shown that F (X,W ) is concave w.r.t. W and there-
fore has a unique maximizer (up to an additional constant), de-
noted W ∗ = {w∗i }ni=1. When the sites X = {xi}ni=1 are fixed,
the optimal partition exists uniquely and is given by the general-
ized Voronoi diagram GD(W ∗). When the capacity constraints
are met, F (X,W ) is exactly equal to the cost function in Eqn. (4).
Furthermore, the gradient of F (X,W ) w.r.t. W can be shown to
be [Aurenhammer et al. 1998; Santambrogio 2015]

∇WF (X,W ) = −(|GD(W )1|−c1, . . . , |GD(W )n|−cn), (6)

which is a normal vector to the tangent plane of F (X,W ).
Hence, to seek the maximizer W ∗ of F (X,W ), we have
∇WF (X,W ∗) = 0, which means that all the capacity constraints
are satisfied.

W

F(R,W)

F(GD(W),W)

(a) (b)

Figure 1: An optimal partition (X∗,W ∗(X∗)) is a saddle point of
the cost function F (X,W ) in Eqn. (5).

To summarize, we optimize over all the sites X and weights W
to find the generalized weight Voronoi diagram that gives an op-
timal partition with capacity constraints. Because there is a u-
nique set of weights W (up to an additional constant) for every
set of sites X to make the resulting weighted Voronoi diagram sat-
isfy the capacity constraints, all the capacity-constrained partition-
s can be represented by a surface W = W ∗(X), which will be
called the constraint surface (see the green curve in Fig. 1(b)). For
each point (Xa,W

∗(Xa)) on the constraint surface, the restriction
F (Xa,W ) of F (X,W ) (Eqn. (5)) to the subspace X = Xa at-
tains its unique maximum at the point (Xa,W

∗(Xa)) among all
the weighting schemes W (see the red curve in Fig. 1(b)). Mean-
while, the restriction F (X,W ∗(X)) of F (X,W ) to the constraint
surface attains its local minimum at a point (X∗,W ∗(X∗)) that
gives an optimal capacity-constrained partition, which is marked
with the blue ball on the green curve in Fig. 1(b). Hence, an opti-
mal partition (X∗,W ∗(X∗)) is a saddle point of the cost function
F (X,W ) in Eqn. (5).



4 Algorithm for Computing Centroidal Power
Diagrams

In this section we propose an efficient method for computing CPDs,
as well as the implementation details.

4.1 Overall Algorithm

As discussed above, if (X∗,W ∗) defines the optimal partition, the
cost function F (X,W ) (see Eqn. (5)) is minimized by X∗ while
maximized by W ∗. In other words, finding (X∗,W ∗) is neither a
pure maximization problem nor a minimization problem. de Goes
et al. [2012] suggested updating X and W in an alternative style,
where the two key operations are: (1) finding the optimal weighting
scheme W to meet the given capacity constraints using Newton’s
method while fixingX [Benamou et al. 2014]; and (2) moving each
site xi to the mass center of its corresponding power cell. How-
ever, this iterative scheme has only linear convergence due to the
ineffectiveness of the latter operation. As de Goes et al. [2012]
observed, developing an efficient CPD algorithm with super-linear
convergence is non-trivial.

Based on the discussion in Section 3, the optimal weightsW ∗ max-
imizing the cost function in Eqn. (5) is uniquely determined (up to
an additional constant) for a given site collection X . Therefore the
cost function can be reconsidered as a function of X :

Minimize F (X,W ∗(X)) =

n∑
i=1

∫
GD(W∗)i

d(x, xi)dµ

−
n∑
i=1

w∗i (|GD(W ∗)i| − ci),
(7)

where W ∗ depends on X so that the specified capacity constraints
are met. Based on this formulation, we will use the combination
of the reduced-gradient technique and the L-BFGS solver [Las-
don et al. 1974; Liu and Nocedal 1989] to move (X,W ) on
the constraint surface W = W ∗(X) towards the minimum of
F (X,W ∗(X)).

Our method works as follows. We start from a feasible point
(X0,W0), i.e. a point on the constraint surface W0 = W ∗(X0).
Without loss of generality, we assume that (Xk,Wk), the position
in the k-th iteration, is a feasible point as well. Next, we com-
pute the reduced-gradient vector ∇xiF (X,W ∗(X)) and feed it to
the LBFGS solver to update the sites Xk to Xk+1. Note that the
weights are computed according to the up-to-date sites before we
evaluate the objective function F . Thus the (k + 1)-th iteration
yields the next position (Xk+1,Wk+1). Repeat the process until
some stopping criteria is met.

We now consider the derivation of ∇xiF (X,W ∗(X)). Based on
the envelope theorem [Milgrom and Segal 2002], we know

∇xiF (X,W ∗(X)) = ∇xiF (X,W ). (8)

According to Reynolds’ transport theorem [Leal 2007] that recasts
derivatives of integrated quantities, we can further show that when
the cost kernel d is differentiable everywhere in the domain, the
gradients of F (X,W ∗(X)) also have a simple form:

∇xiF (X,W ∗(X)) =

∫
GD(W∗)i

∇xid(x, xi)dµ. (9)

The pseudocode of our method is given in Algorithm 1. It is worth
noting that for general cost kernel that is different from the 2-
Wasserstein metric whose kernel is the squared distance, instead

of using Newton’s method, we use the L-BFGS method to update
W , because the Hessian matrix is much more complicated in this
case than that in the case.

1
2 Input: domain D, density ρ, cost kernel d, number of points n,

capacity constraints {ci} and a threshold ε as the termination
condition.

3 Initialization: set k = 0 and X0 to be n randomly generated sites.
4 repeat //L-BFGS
5 repeat //To meet the capacity constraints
6 Update Wk by Newton’s method or L-BFGS method
7 until ||∇WF (X,W )|| < 10−12

8 Compute the gradients∇XF (X,W ∗(X)) in Eqn. (9)
9 Estimate the step-size for updating X by a line-search

10 Xk+1 ← Xk
11 k ← k + 1
12 until ||∇XF (X,W ∗(X))|| < ε
13 Output: (Xk,Wk)

Algorithm 1: Computing CPDs using L-BFGS.

4.2 Optimization Options

The computation of W ∗ is crucial to accurate computation of
∇xiF (X,W ∗(X)). As de Goes et al. [2012] observed, it usu-
ally takes 3 to 5 iterations to bring the residual of capacity con-
straints to be within an accuracy of 10−12. Therefore we require
||∇WF (X,W )|| < 10−12 during the step of updating W . In im-
plementation, rather than always resetting W to 0 at the very be-
ginning of Newton’s method, it is better to use the previous values
of W to initialize Newton’s method. This is helpful for reducing
the computation cost especially when ||∇WF (X,W )|| becomes
very small. We observed an improvement of about 10% due to this
“trick” in our experiments. When empty cells occur, we reduce
the step size by half repeatedly until each site dominates a non-
empty cell, as in [de Goes et al. 2012; Zhao et al. 2013]. Note that
the convergence of this Newton step-control scheme was recently
proved [Kitagawa et al. 2016].

For the 2-Wasserstein metric, the optimal partition is given by pow-
er diagrams. In this case, the Hessian matrix of F (X,W ) w.r.t. W
has an elegant form [de Goes et al. 2012]. But for a general cost k-
ernel different from the squared Euclidean distance, the coefficients
of the Hessian matrix (gradient of the distance function integrated
over the facets of the power diagram) are much more complicat-
ed, and in most cases not known in closed form. For this reason
we use the L-BFGS method that only needs the first-order deriva-
tives (that always correspond to the difference between the capacity
constraints and the measures of the Laguerre cells).

4.3 Numerical Integration and Boundary Treatment

When the density function ρ is constant and the
cost kernel is the 2-Wasserstein metric, the inte-
grand in Eqn. (7) has an explicit representation by
using the Green formula [Dobrovolsky 1972] to
transform the computation of the cost function, as
well as its gradients, into contour integration. But
in general cases, the cost function cannot be reduced to an explic-
it representation and thus discretization of the domain, typically a
sufficiently refined triangulation, is required. Therefore, at the very
beginning of the algorithm, we randomly distribute a set of points
inside the domain and optimize their positions [Liu et al. 2009].
After that, we project the outer-ring points (whose Voronoi cells in-
tersect the boundary) onto the boundary and re-optimize the other



points. Finally we compute the constrained Delaunay triangulation
w.r.t. these points as discretization of the domain; See the inset
figure.

xi xi

xj xj
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Besides, the optimal partition of
the domain for a general cost k-
ernel d(·, ·) may not be the pow-
er diagram. We have to develop
an effective technique to build the
partition with the help of the base
triangulation. First of all, we take the sites in X as sources and
compute the weighted discrete distance field using the fast sweep-
ing technique so that each vertex v of the base triangulation finds
its nearest site xi inX , i.e. d(v, xi)−wi ≤ d(v, xj)−wj , ∀j 6= i.
After that, we compute the decomposition of each triangle depend-
ing on the following cases:

� If the site xi gives the minimum weighted distances to
v1, v2, v3 at the same time, we simply assign the triangle
f to xi.

� If the site xi gives the minimum weighted distance to v1

and the site xj gives the minimum weighted distances to
v2, v3, we come to find two dividing points p1 ∈ v1v2

and p2 ∈ v1v3 such that p1p2 can be taken as a segment
delimiting xi’s cell and xj’s cell. The dividing point p1

can be found from the equation d(xi, v1) − wi + (x −
v1) · ∇xd(x, xi) |v1= d(xj , v2) − wj + (x − v2) ·
∇xd(x, xj) |v2 . The other dividing point p2 can be com-
puted likewise. See the inset figure.

� If the minimum weighted distances to v1, v2, v3 are re-
spectively given by xi, xj , xk, then we find three divid-
ing points p1 ∈ v1v2, p2 ∈ v2v3, p3 ∈ v3v1 as men-
tioned above. We denote the center point by p = (p1 +
p2 + p3)/3. Finally, we assign the subcell ̂v1p1pp3 to
xi, ̂v2p2pp1 to xj , and ̂v3p3pp2 to xk, as the inset figure
shows.

Another implementation detail we need to mention is boundary
treatment. During the optimization process, some sites may jump
out of the domain Ω and we need to pull them back to ∂Ω or the in-
terior side of Ω. Suppose that in the j-th iteration, the i-th site x(j)

i

is outside Ω and we wish to pull x(j)
i back. We find the intersection

point p between ∂Ω and the connecting line segment of x(j)
i and

its previous position x(j−1)
i , and take p as the corrected position of

x
(j)
i .

4.4 Performance Evaluation

Table 1: Statistics of the number of operations of building power
cells for the three examples shown in Fig. 2. Note that we take
‖∇F‖ ≤ 10−8 as the termination condition.

Examples # of building power cells Timing (s)
[de Goes et al. 2012] Ours [de Goes et al. 2012] Ours

100 sites 4091 279 20.8 1.6
500 sites 2944 464 246.7 39.5
1000 sites 4307 471 556.0 58.4

We implemented and experimented with our CPD algorithm on a
computer with a 64-bit version of Win7 system, a 3.07 GHz In-
tel(R) Core(TM) i7 CPU and 6 GB memory. The coding language
is C++. Now we shall compare our CPD algorithm with the state
of the art [de Goes et al. 2012]. For the examples shown in Fig. 2,
we take ‖∇F‖ ≤ 10−8 as the termination condition. For the ex-
ample of n = 100 sites (see the left column), we assume that the
domain [0, 1] × [0, 1] is associated with a uniform density. For the
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Figure 2: Performance comparison with [de Goes et al., 2012].
The first row: snapshots of our algorithm. The second row: snap-
shots of [de Goes et al., 2012]. The third row: the plots of the cost
function. The last row: the plots of the gradient of the cost function.
Note that the horizontal axis in (g-l) denotes the timing (s).

example of n = 500 sites (see the middle column), the density
function at x = (x(1), x(2)) is set to ρ(x) = 0.1 + x(1). For the
example of n = 1, 000 sites (see the right column), the density is
set to ρ(x) = e−8(x(1)−0.5)2−8(x(2)−0.5)2 . Fig. 2(j-l) shows that
our algorithm exhibits a faster convergence. In detail, we observe
that (1) the resultant cells by our algorithm are of more compact
shapes than [de Goes et al. 2012] after the same number of itera-
tions; (2) the cost by our algorithm reaches the stable state earlier
than [de Goes et al. 2012]; and (3) the gradient of the cost function
decreases more sharply. Note that the horizontal axis of Fig. 2(g-l)
denotes the timing.

Since the operation of building power cells is the most time-
consuming part, Table 2 shows the number of building power cells
to achieve the same specified threshold 10−8, as well as the total
computation time. From the statistics we can see that our reduced
gradient method has empirical super-linear convergence and signif-
icantly outperforms [de Goes et al. 2012].



4.5 General Cost Functions

Many real-life application occasions can be formulated as a CPD
problem. Consider deploying some service centers (e.g. postal of-
fices or medical centers) to serve the residents of a city, where each
center has a capacity constraint. It’s better to take the Euclidean
distance, rather than the squared distance, as the service cost ker-
nel. Another example is when the domain is a curved surface where
we often take geodesic distances as the cost kernel. As pointed out
in Section 3, our algorithmic framework supports general kernels.
Here we use six typical kernels (see Fig. 3) to exhibit the extensi-
bility of our algorithm, including

� d(x, xi) = (x(1) − x(1)
i )2 + (x(2) − x(2)

i )2 in R2;

� d(x, xi) =

√
(x(1) − x(1)

i )2 + (x(2) − x(2)
i )2 in R2;

� d(x, xi) = (x(1) − x(1)
i )4 + (x(2) − x(2)

i )4 in R2;

�Geodesic distance on mesh surfaces;

� Squared geodesic distance on mesh surfaces.

� Cubic geodesic distance on mesh surfaces.

In Fig. 3, the first row shows that CPD has freedom degrees to sup-
port user-specified capacity constraints while CVT cannot control
cell sizes. The second row gives three CPDs with different cost
kernels assuming the same uniform density. The third row shows
the case of a Gaussian density function. The last row exhibits three
CPDs on curved surfaces. When handling mesh surfaces, each site
xi is constrained to move along the tangent plane and projected onto
the surface before evaluating the cost function. Furthermore, to find
the optimal CPD partition, we have to frequently query the geodesic
distances [Surazhsky and Surazhsky 2005; Xin and Wang 2009] be-
tween two points, which is computationally expensive. Due to this
limitation, each of the input meshes in Fig. 3(i-k) contains about
1K triangle faces in our experiments. With the termination condi-
tion ‖∇WF (X)‖ being less than 10−4, we need about 15 iterations
and 5 minutes to deal with each example. (Note that the partition of
the surface is approximate and the evaluation of the cost function is
approximate as well. That’s why we set the tolerance to be 10−4,
rather than 10−8.) However, this can be greatly accelerated using
several recent methods for geodesic computation [Crane et al. 2013;
Ying et al. 2013b; Ying et al. 2013a]. With a faster geodesic com-
putation querier, we believe that it has a great potential for many
geometry processing tasks.

5 Applications

In this section, we shall use it for three problems: displacement
interpolation of function distributions, blue-noise point sampling,
and optimal convex decomposition of 2D domains.

5.1 Displacement Interpolation

The traditional Wasserstein barycenter problem, i.e. displacement
interpolation, provides a generic method for interpolating between
distributions or functions based on advection instead of blend-
ing [Bonneel et al. 2011]. It has been found very useful in many ap-
plications such as shape interpolation [Solomon et al. 2015; Ober-
man and Ruan 2015] and texture synthesis [Bonneel et al. 2015].
The displacement interpolation is to find a target probability densi-
ty ρ defined by

min
ρ

m∑
k=1

λkW
2
2(ρk, ρ), (10)
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Figure 3: Our algorithm can be extended to general cost kernel-
s. The first row shows that CPD can generate compact cells with
user-specified capacity constraints while CVT cannot. For the other
examples, the capacity constraints divide the domain equally.

where {ρk}mk=1 are a collection of given probability densities
and {λk}mk=1 are user-specified weights for computing the aver-
age probability density with regard to the 2-Wasserstein distance
W(·, ·). Recently many research works [Cuturi and Doucet 2013;
Benamou et al. 2015; Solomon et al. 2015] suggested an energy
term with an additional entropy regularization, bringing convexity
to the problem and make it easier to solve. However, such an en-
tropy term would result in an over-smoothed result in exchange for
better efficiency. Besides, although lots of works proposed to com-
pute the traditional Wasserstein barycenter distributions, few works
aim at the semi-discrete setting. Here we propose a framework that
supports multiple input distributions, each of which is represented
by a collection of sites associated with capacities or a continuous
probability density function. Our algorithm produces adaptively
distributed samples to encode the final distribution.

Consider the following semi-discrete minimization problem, denot-
ing Rk = {Rik}ni=1 : Ω → {xi}ni=1 as an arbitrary assignment
between the support of ρk and X


min
X

m∑
k=1

λkW
2
2(ρk, X,Rk),

s.t.

∫
Ri

k

ρk dx = ci, for all i, k.

(11)



The constraint term in (11) forces the mass transported to xi under
ρk to be equal to a given ci. Based on the conclusion of [Aurenham-
mer et al. 1998], each assignmentRk minimizing the 2-Wasserstein
cost under the capacity constraint should be a power diagram, and
thus Eqn. (11) can be further reduced to the following minimization
problem [de Goes et al. 2012]:

Minimize
X

Fb(X) =

m∑
k=1

λk

(
n∑
i=1

∫
GD(W )i

k

ρk||x− xi||2 dx

−
n∑
i=1

wi(|GD(W )ik| − ci)

)
,

(12)

with

∇xiFb(xi) =

m∑
k=1

2ciλk(xi − bik), (13)

where bik is the centroid of the i-th power cell under the k-th distri-
bution. In implementation, the optimization procedure can follow a
similar procedure to computing CPDs, presented in Algorithm 2.

1
2 Input: densities {ρk}mk=1, weights {λk}mk=1, capacities {ci}ni=1,

and a threshold ε.
3 Output: {xi}ni=1.
4 repeat //L-BFGS
5 for k = 1, 2, 3, · · · ,m
6 //for the k-th distribution
7 Optimize Wk until each power cell amounts to the given

capacity
8 Compute the centroids of the power diagram under k-th

distribution
9 end

10 Compute the cost function Fb(X) in Eqn. (12)
11 Compute the gradient w.r.t. X; See Eqn. (13)
12 Update X by step search
13 until ||∇XFb(X)|| < ε

Algorithm 2: Capacity Constrained Wasserstein Barycenter with
LBFGS.

Fig. 4 shows the result from two identical circular spots. The ide-
al distribution when the weights of these two inputs are both 0.5
should be of the same circular shape at the middle position. We
compare our result with that by [Solomon et al. 2015] and visual-
ize the color-coded errors in Fig. 4(c&g). The resolutions of both
input images are 200× 200 in this example. We can see that when
n = 1.5K, we achieve an error of RMSE=0.078 in about 30 sec-
onds, which is at the same efficiency/accuracy level with [Solomon
et al. 2015]; But when n increases to 10K, the error of RMSE de-
creases to 0.0441 at the cost of more computation time - about 30
minutes for this example (the inefficiency is due to the density set-
ting where lots of density values are very close to 0). Note that for
comparison purpose, Fig. 4(e-f) are produced by an adaptive kernel
estimation as the postprocessing [Abramson 1982]. Fig. 5 shows
the results of 2-Wasserstein barycenters with multiple inputs.

5.2 Blue Noise Sampling

Stochastic point distributions with blue noise properties are widely
used for various applications in computer graphics [Yan et al. 2015].
de Goes et al. [2012] presented a fast algorithm to generate high-
quality blue noise point distributions by finding a stationary point
of the objective function defined in Eqn. (5). However, extremizing

(a) The first input (b) Convolutional (c) Pointwise error of (b)

(d) The second (e) Ours, n=1.5K (f) Ours, n=10K (g) Error of (f)

Figure 4: Displacement interpolation of two identical circular
spots. (a)&(d): the two inputs of circular spots; (b)&(c): interpo-
lated distribution by [Solomon et al. 2015] and the corresponding
color-coded point-wise error (RMSE=0.0794), generated in 30 sec-
onds (using the Matlab code provided by the authors of [Solomon
et al. 2015]). (e-g) our results for n=1.5K and n=10K. When
n = 1.5K, we achieve RMSE=0.078 in about 30 seconds; When
n increases to 10K, the error of RMSE decreases to 0.0441 at the
cost of increased computation time - about 30 minutes for this ex-
ample.

the objective function does not prevent the regular patterns from e-
merging. In fact, the hexagonal grid patterns are the solutions to
the extremization problem. de Goes et al. [2012] propose to jitter
the points and run the optimization again when local regularities
are detected. It is expected that a “shallower” extremum of the ob-
jective function which contains no regular patterns is obtained by
a local searching algorithm. However, the optimization method of
[de Goes et al. 2012] used a very loose stopping criteria, which usu-
ally terminates in 10 iterations, well before convergence. A more
faithful local extremum can be efficiently achieved by our reduced
gradient method that optimizes the same function. Experimental
results show that “extreme” optimization of the objective function
always results in structured point distributions even starting from a
random point distribution (see Fig. 6(a)).

It is worth noting that all point samples are enforced to have
the same capacity c in the existing methods based on capacity-
constrained Voronoi tessellation [Balzer et al. 2009; Li et al. 2010;
Chen et al. 2012; de Goes et al. 2012]. To prevent regular pat-
terns in the point distributions, Zhang et al. [2016] suggested using
non-uniform capacity constraints and dynamically adjust them dur-
ing optimization. Inspired by this, we propose to jitter the capacity
constraints for the points before optimization. A random noise with
a maximum magnitude τ is used to jitter the capacity constraint for
each point. The new capacity constraint c∗i for each point is now
specified by the following equation:

ci = (1 + τ · rand(−1, 1))c, c∗i =
ci∑
ci
nc,

where n is the sample number, and the second formula is to nor-
malize the constraints so that they all sum to the total capacity of
the domain.

Fig. 6(a) and 6(c) show point sets generated by extremizing the ob-
jective function with uniform capacity constraints and the jittered
capacity constraints, respectively. A strict convergence threshold
(‖∇XF‖ ≤ 10−7) is used for both cases. We can see that the
jittered capacity constraints avoid regularity in the resultant point



(a) τ = 0, ‖∇XF‖ < 10−7 (b) τ = 0.4, ‖∇XF‖ < 10−7 (c) τ = 0.2, ‖∇XF‖ < 10−5

Figure 6: Sampling results with different τ ’s over a periodic domain with constant density. The blue noise properties can be analyzed
through comparing the averaged periodograms, radial mean power (red curve), and anisotropy (blue curve).

Figure 5: The interpolation by our method of the four inputs
(500×500 in size) at the four corners of the array (highlighted in
red). Each output frame is generated by 10K sites in about 15 min-
utes.

distribution, producing high-quality blue noise. For the sake of fast
computation, we set τ as a small number 0.2 and use a loose stop-
ping condition with ‖∇XF‖ ≤ 0.05

√
nm3 in practice. Under this

setting, our optimization method is able to converge after a dozen
of iterations, and generate high-quality blue noise samplings, as
shown in Fig. 6(c).

As we jitter the capacity constraints for sampling points, an im-
mediate concern is that the point distribution may not adapt to the
given density function precisely. Fig. 7 shows a sampling result
generated by our method for an intensity ramp. We count the point
density in each quarter of the ramp, and compare it to the reference
density of the ramp. We can see that jittering the capacity con-
straints break local structured patterns while returns good adaption
to the given density function.

Fig. 8 shows two image stippling results generated by our optimiza-
tion framework. The sampling points {xi}ni=1 are initialized ran-
domly according to the piecewise-constant density function defined
by the gray scale of the input image. Integrations involved in our
formulation are exactly computed by constructing the pixel-cell in-
tersections, as done in [de Goes et al. 2012].

1.50% 10.90% 29.70% 58.00%

1.50% 10.90% 29.60% 57.90%

1.55% 10.92% 29.69% 57.83%

(a)

(b)

(c)

Figure 7: Sampling of a quadratic density function with 1000
points, the percentages indicate point density in each quarter: (a)
input quadratic density function; (b) sampling result by [de Goes
et al. 2012]; (c) our result.

5.3 Centroidal Convex Decomposition

Another important problem in geometric computing, especially in
mesh generation, is the convex decomposition of a geometric do-
main [Greene 1983; Ghosh et al. 2013], that is, decomposing a gen-
eral non-convex domain into the union of a number of convex cells.
The problem is relevant to numerous applications in pattern recog-
nition, Minkowski sum computation, motion planning, computer
graphics, and origami folding [Ghosh et al. 2013]. In this section
we use the optimal capacity-constrained partition to provide a novel
and effective solution to the convex decomposition of a 2D planar
region.

Existing algorithms for convex decomposition usually minimize the
number of convex components; See Fig. 9(a). In this paper, we pro-
pose a different type of convex decomposition, called the optimal
convex decomposition that meets the following criteria: (1) each
decomposed cell is convex; (2) the decomposed cells have spec-
ified areas; and (3) the decomposed cells are of compact shapes.
Fig. 9(b) shows such a convex decomposition. Note that the ter-
m “optimal” is used to emphasize shape regularity rather than the
number of decomposed cells.

Suppose that the boundary of the input 2D domain to be decom-



(a) (b) (c) (d)

Figure 8: Image stippling. (a)&(c) Input images; (b)&(d) stippling results with 10K points generated by our optimization framework in 129
seconds and 146 seconds, respectively.

(a) (b)

Figure 9: Convex decomposition of a star shape. The optimal con-
vex decomposition (b) is much different than the traditional convex
decomposition (a).

posed is defined by a polygonal curve. It is observed that sim-
ply running a CPD algorithm would cause a concave vertex on the
boundary to be located in the interior of a single CPD cell, resulting
in a non-convex cell (see Fig. 10(a)). Our key idea is to define all
concave boundary vertices as virtual sites that are fixed and asso-
ciated with a sufficiently small capacity constraint. Thus, the new
cost function becomes

F (X,W ) =

n+k∑
i=1

∫
RW

i

ρ(x)‖x− xi‖2dx (14)

subject to

ci =

∫
RW

i

ρ(x)dx(, mi), 1 ≤ i ≤ n+ k, (15)

where n is the number of variable sites and k is the number of
virtual sites on the boundary. Here {mi, 1 ≤ i ≤ n} is a set of
capacity constraints for the moveable sites, and the number of such
sites, n, is usually specified by the user. Let maverage be the average
value of {mi, 1 ≤ i ≤ n}. The capacity constraint for the virtual
sites, say, mvirtual, is given by

mvirtual = ε×maverage, (16)

where ε is set to be 10−3 in our experiments.

Furthermore, we assign a large multiplicative penalty to the cost
terms defined by the virtual sites such that those small-sized power
cells can be made compact and stay around the virtual sites (see
Fig. 10(b)). The new cost function is as follows.

F (X,W ) =

n+k∑
i=1

∫
RW

i

ρ(x)‖x− xi‖2dx

+ λ

n+k∑
i=n+1

∫
RW

i

ρ(x)‖x− xi‖2dx (17)

(a) (b)

(c) (d)

Figure 10: Computation of the optimal convex decomposition:
(a) Generally the concave points may be covered totally by a single
CPD cell, giving rise to a non-convex cell. (b) Even if we enforce
a small capacity for the virtual site at the concave point, the pow-
er cell stay non-convex after optimization. (c) After adding a large
penalty coefficient λ for the virtual sites, the minimization makes all
the normal power cells almost convex. (d) By removing the virtual
sites from the results in (c), we obtain a convex decomposition of
the domain.

Empirically we take the penalty coefficient to be

λ =
mnormal

maverage
. (18)

After the above cost function is minimized (see Fig. 10(c)), we re-
move those virtual sites to get a clean convex decomposition in
which each concave point is located on the common boundary of
two adjacent convex power cells (see Fig. 10(d)). Fig. 11 demon-
strates three examples of convex decomposition produced by our
method based on CPDs with various density settings. We note that
the density value should be larger in narrow regions and around
concave points, generally implying a denser site distribution, to
achieve a successful decomposition.

6 Conclusions and Future Works

In this paper, a super-linear convergent method is developed for
computing the capacity-constrained centroidal power diagram. Ex-
perimental results show that our algorithm outperforms the existing
method. Due to its effectiveness, we apply our fast CPD algorithm
to three problems in computer graphics and geometric processing:
displacement interpolation, blue-noise point sampling, and optimal



(b)

(c)

(a)

Figure 11: Convex decomposition of complex 2D shapes. The blue
dots denote the user-specific concave points on the given bound-
ary. For the Tortoise shape, we set a uniform density distribution.
For the Guitar shape (b) and the Gear-Teeth shape (c), the density
is higher in narrow regions or around the user-specified concave
points.

convex decomposition of 2D domains. Furthermore, we show that
the proposed algorithm can be extended to the capacity-constrained
optimal partition with respect to general cost functions.

Our algorithm, in its current form, has several limitations. First, the
capacity constraints are required to be met throughout the optimiza-
tion process, which may be a cause of inefficiency. It is therefore
valuable to develop an optimization technique that can accommo-
date an infeasible start. Second, the optimal mass transport problem
in 3D space has been studied [Su et al. 2016; Lévy 2014]. We are
therefore interested in extending our method to 3D or spaces of
higher dimensions. Finally, we have only studied optimal convex
decomposition of a 2D domain. The optimal convex decomposi-
tion of 3D domain is more relevant problem in practice and is much
more challenging that the 2D version, so would need further study.
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7 Appendix

Theorem 1: For any fixed sites X = {xi}, the capacity-
constrained partition R = {Ri}ni=1 of the domain Ω that mini-
mizes the cost function in Eqn. (4) is the one such that the bound-
ary of any two adjacent regions Ra and Rb, which are associated
with the sites a and b in X respectively, is define by the equation
d(x, a)− wa = d(x, b)− wb for some constants wa and wb.

PROOF: We shall prove the theorem by contradiction. Let us denote
partition that minimizes the cost function in Eqn. (4). Assume that
the theorem is not true. Then there exist two neighboring sites a
and b with the shared boundary Γ of Ra and Rb such that there
exist two distinct points x0, y0 ∈ Γ for which

d(x0, a)− d(x0, b) 6= d(y0, a)− d(y0, b).

Without loss of generality, suppose that

d(x0, a)− d(x0, b) > d(y0, a)− d(y0, b)

Let B(x, δ) denote the ball centered at x with radius δ. Since
d(x, y) is continuous with respect to x and y, there exist two balls
B(x0, δ0) and B(y0, δ0) with sufficiently small δ0 > 0 such that

d(u, a)− d(u, b) > d(v, a)− d(v, b)

for all u in B(x0, δ0) and all v in B(y0, δ0).

Because the boundary Γ goes through the centers of B(x0, δ0)
and B(y0, δ0), there exist two balls Bx ≡ B(x1, δ1) and By ≡
B(y1, δ2) with sufficiently small δ1, δ2 > 0 such that Bx and By
have equal capacities (i.e.

∫
u∈Bx

ρ(u)dσ =
∫
u∈By

ρ(v)dσ) and
that Bx ⊂ Ra ∩B(x0, δ0) and By ⊂ Rb ∩B(y0, δ0).

Since Bx ⊂ B(x0, δ0) and By ⊂ B(y0, δ0), we have

d(u, a)− d(u, b) > d(v, a)− d(v, b)

for all u in Bx and all v in By . It follows that∫
u∈Bx

ρ(u)(d(u, a) − d(u, b))dσ >

∫
v∈By

ρ(v)(d(v, a) − d(v, b))dσ,

which, after rearranging, yields∫
u∈Bx

ρ(u)d(u, a)dσ +

∫
v∈By

ρ(v)d(v, b)dσ

>

∫
u∈Bx

ρ(u)d(u, b)dσ +

∫
v∈By

ρ(v)d(v, a)dσ (19)

On the other hand, it follows from the optimality ofR, in particular,
the optimality ofRa andRb that swappingBx andBy betweenRa
and Rb, while maintaining the capacities of Ra and Rb, does not
reduce the total cost. Therefore∫

u∈Bx

ρ(u)d(u, a)dσ +

∫
v∈By

ρ(v)d(v, b)dσ

≤
∫
u∈Bx

ρ(u)d(u, b)dσ +

∫
v∈By

ρ(v)d(v, a)dσ (20)

Clearly, Eqn. 20 and Eqn. 19 contradict. Therefore we conclude
that

d(x0, a)− d(x0, b) = d(y0, a)− d(y0, b),

for any two arbitrary points x0 and y0 on the boundary Γ. Hence,
we have proved that the boundary curve Γ separating Ra and Rb is
defined by an equation of the form

d(x, a)− wa = d(x, b)− wb (21)

for some constants wa and wb. This completes the proof.
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