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Figure 1: Anisotropic meshing results generated by our particle-based method.

Abstract

This paper introduces a particle-based approach for anisotropic sur-
face meshing. Given an input polygonal mesh endowed with a Rie-
mannian metric and a specified number of vertices, the method gen-
erates a metric-adapted mesh. The main idea consists of mapping
the anisotropic space into a higher dimensional isotropic one, called
“embedding space”. The vertices of the mesh are generated by uni-
formly sampling the surface in this higher dimensional embedding
space, and the sampling is further regularized by optimizing an en-
ergy function with a quasi-Newton algorithm. All the computations
can be re-expressed in terms of the dot product in the embedding
space, and the Jacobian matrices of the mappings that connect d-
ifferent spaces. This transform makes it unnecessary to explicitly
represent the coordinates in the embedding space, and also provides
all necessary expressions of energy and forces for efficient compu-
tations. Through energy optimization, it naturally leads to the de-
sired anisotropic particle distributions in the original space. The tri-
angles are then generated by computing the Restricted Anisotropic
Voronoi Diagram and its dual Delaunay triangulation. We compare
our results qualitatively and quantitatively with the state-of-the-art
in anisotropic surface meshing on several examples, using the stan-
dard measurement criteria.
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1 Introduction

Anisotropic meshing offers a highly flexible way of controlling
mesh generation, by letting the user prescribe a direction and densi-
ty field that steers the shape, size and alignment of mesh elements.
In the simulation of fluid dynamics, it is often desirable to have e-
longated mesh elements with desired orientation and aspect ratio
given by a Riemannian metric tensor field [Alauzet and Loseille
2010]. For surface modeling, it has been proved in approxima-
tion theory that the L2 optimal approximation to a smooth surface
with a given number of triangles is achieved when the anisotropy of
triangles follows the eigenvalue and eigenvectors of the curvature
tensors [Simpson 1994; Heckbert and Garland 1999]. This can be
easily seen from the example of ellipsoid surface in Fig. 2 where
the ratio of the two principal curvatures Kmax/Kmin is close to
1 near the two ends of the ellipsoid and is as high as 100 in the
middle part. Anisotropic triangles stretched along the direction of
minimal curvatures in the middle part of the ellipsoid provide best
approximation, while isotropic triangles are needed at its two ends.

In this paper, we propose a new method for anisotropic meshing of
surfaces endowed with a Riemannian metric. We rely on a particle-
based scheme, where each pair of neighboring particles is equipped
with a Gaussian energy. It has been shown [Witkin and Heckbert
1994] that minimizing this pair-wise Gaussian energy leads to a u-
niform isotropic distribution of particles. To compute the anisotrop-
ic meshing on surfaces equipped with Riemannian metric, we uti-
lize the concept of a higher dimensional “embedding space” [Nash
1954; Kuiper 1955]. Our method optimizes the placement of the
vertices, or particles, by uniformly sampling the higher dimension-
al embedding of the input surface. This embedding is designed in
such a way that when projected back into the original space (usual-



Figure 2: Isotropic and anisotropic meshing with 1,000 output
vertices of the ellipsoid surface. The stretching ratio (defined in
Sec. 2.1) is computed as

√
Kmax/Kmin, where Kmax and Kmin

are the two principal curvatures. Note that the “End Part” is ren-
dered with orthographic projection along its long-axial direction,
to better show the isotropy.

ly 2D or 3D), a uniform sampling becomes anisotropic with respect
to the input metric. Direct reference to the higher dimensional em-
bedding is avoided by re-expressing all computations in terms of the
dot product in the high-dimensional space, and the Jacobian matri-
ces of the mappings that connect different spaces. Based on this
re-expression we derive principled energy and force models for ef-
fective computation on the original manifold with a quasi-Newton
optimization algorithm. Finally, the triangles are generated by com-
puting a Restricted Anisotropic Voronoi Diagram and extracting the
dual of its connected components.

This paper makes the following contributions for efficiently gener-
ating high-quality anisotropic meshes:

• It introduces a new particle-based formulation for anisotropic
meshing. It defines the pair-wise Gaussian energies and forces
between particles, and formulates the energy optimization in a
higher dimensional “embedding space”. We show further how
anisotropic meshing can be translated into isotropic meshing
in this higher dimensional embedding space (Sec. 3.1). The
energy is designed in such a way that the particles are uni-
formly distributed on the surface embedded in this higher di-
mensional space. When the energy is optimized, the corre-
sponding particles in the original manifold will achieve the
anisotropic sampling with the desired input metric.

• It presents a computationally feasible and efficient method
for our energy optimization (Sec. 3.2). The high-dimensional
energy function and its gradient is mapped back into the o-
riginal space, where the particles can be directly optimized.
This computational approach avoids the need of computing
the higher dimensional embedding space. Such energy opti-
mization strategy shows very fast convergence speed, without
any need for the explicit control of particle population (e.g.,
inserting or deleting particles to meet the desired anisotropy).

2 Background and Related Works

2.1 Definition of Anisotropy

Anisotropy denotes the way distances and angles are distorted. Ge-
ometrically, distances and angles can be measured by the dot prod-
uct: ⟨v,w⟩, which is a bilinear function mapping a pair of vectors
v,w to R. The dot product is symmetric, positive, and definite
(SPD). If the dot product is replaced with another SPD bilinear for-
m, then an anisotropic space is defined. We consider that a met-
ric M(.), i.e. an SPD bilinear form, is defined over the domain
Ω ⊂ Rm. In other words, at a given point x ∈ Ω, the dot product
between two vectors v and w is given by ⟨v,w⟩M(x). In practice,
the metric can be represented by a symmetric m×m matrix M(x),
in which case the dot product becomes:

⟨v,w⟩M(x) = vTM(x)w. (1)

The metric matrix M(x) can be decomposed with Singular Value
Decomposition (SVD) into:

M(x) = R(x)TS(x)2R(x), (2)

where the diagonal matrix S(x)2 contains its ordered eigenvalues,
and the orthogonal matrix R(x) contains its eigenvectors. We note
that a globally smooth field R(x) may not exist for surfaces of
arbitrary topology.

For the metric design, we use the following two options:
(1) In some of our experiments, we start from designing a smooth
scaling field S(x) and a rotation field R(x) that is smooth in re-
gions other than those singularities, and compose them to Q(x) =
S(x)R(x) and M(x) = Q(x)TQ(x), which is the same as Du et
al. [2005]. They are defined on the tangent spaces of the surface.
Suppose s1 and s2 are the two diagonal items in S(x) correspond-
ing to the two eigenvectors in the tangent space, and s1 ≤ s2. We
simply call s2

s1
as the stretching ratio. This process will play a role

later when the user specifies the desired input metric (Sec. 5).

(2) Note that if M(x) is given by users, the decomposition to
Q(x) is non-unique. An equivalent decomposition M(x) =
QO(x)TQO(x) is given by any matrix QO(x) = O(x)Q(x),
where O(x) is a m ×m orthogonal matrix. In other words, Q(x)
is unique up to a rotation.

However, it is easy to show that if a SPD metric M(x) is giv-
en, its square root Q′(x) =

√
M(x) is also a SPD matrix, and

such decomposition is unique (Theorem 7.2.6 of [Horn and John-
son 1985]) and smooth (Theorem 2 of [Freidlin 1968]). Q′(x)
is a symmetric affine mapping: Q′(x) = R(x)TS(x)R(x), and
M(x) = Q′(x)Q′(x). In Sec. 5.1, we use the “Mesh Font” ex-
ample to show that Q′(x) can work well in our framework, given a
user specified smooth metric field M(x).

It is interesting to note that if the metric tensor field is given as:

M(x) = ρ(x)
2
m · I, (3)

where ρ(x) : Ω → R and I is the identity matrix, then M(x)
defines an isotropic metric graded with the density function ρ(x).

Given the metric field M(x) and an open curve C ⊂ Ω, the length
of C is defined as the integration of the length of tangent vector
along the curve C with metric M(x). Then, the anisotropic distance
dM(x,y) between two points x and y can be defined as the length
of the (possibly non-unique) shortest curve that connects x and y.



2.2 Previous Works

Anisotropic Voronoi Diagrams:
By replacing the dot product with the one defined by the metric,
anisotropy can be introduced into the definition of the standard no-
tions in computational geometry, e.g., Voronoi Diagrams and De-
launay Triangulations. The most general setting is given by Rie-
mannian Voronoi diagrams [Leibon and Letscher 2000] that replace
the distance with the anisotropic distance dM(x,y) defined above.
Some theoretical results are known, in particular that Riemannian
Voronoi diagrams admit a valid dual only in dimension 2 [Boisson-
nat et al. 2012]. However, a practical implementation is still beyond
reach [Peyre et al. 2010]. For this reason, two simplifications are
used to compute the Voronoi cell of each generator xi :

VorLabelle(xi) = {y|dxi(xi,y) ≤ dxj (xj ,y),∀j}
VorDu(xi) = {y|dy(xi,y) ≤ dy(xj ,y), ∀j}

where:
dx(y, z) =

√
(z− y)TM(x)(z− y).

(4)

The first definition VorLabelle [Labelle and Shewchuk 2003] is eas-
ier to analyze theoretically. The bisectors are quadratic surfaces,
known in closed form, and a provably-correct Delaunay refinemen-
t algorithm can be defined. The so-defined Anisotropic Voronoi
Diagram (AVD) may be also thought of as the projection of a
higher-dimensional power diagram [Boissonnat et al. 2008a]. The
second definition VorDu [Du and Wang 2005] is best suited to a
practical implementation of Lloyd relaxation in the computation of
Anisotropic Centroidal Voronoi Tessellations.

Centroidal Voronoi Tessellation and its Anisotropic Version:
A Centroidal Voronoi Tessellation (CVT) is a Voronoi Diagram
such that each point xi coincides with the centroid of its Voronoi
cell. A CVT can be computed by either the Lloyd relaxation [L-
loyd 1982] or a quasi-Newton energy optimization solver [Liu et al.
2009]. It generates a regular sampling [Du et al. 1999], from which
a Delaunay triangulation with well-shaped isotropic elements can
be extracted. In the case of surface meshing, it is possible to gener-
alize this definition by using a geodesic Voronoi diagram over the
surface [Peyre and Cohen 2004]. To make the computations simpler
and cheaper, it is possible to replace the geodesic Voronoi diagram
with the Restricted Voronoi Diagram (RVD) or Restricted Delau-
nay Triangulation (RDT), defined in [Edelsbrunner and Shah 1994]
and used by several meshing algorithms, see [Dey and Ray 2010]
and the references herein. Hence a Restricted Centroidal Voronoi
Tessellation can be defined [Du et al. 2003]. With an efficient algo-
rithm to compute the Restricted Voronoi Diagram, Restricted CVT
can be used for isotropic surface remeshing [Yan et al. 2009].

CVT was further generalized to Anisotropic CVT (ACVT) by Du
et al. [2005] using the definition VorDu in Eq. (4). In each Lloyd
iteration, an anisotropic Delaunay triangulation with the given Rie-
mannian metric needs to be constructed, which is a time-consuming
operation. Valette et al. [2008] proposed a discrete approximation
of ACVT by clustering the vertices of a dense pre-triangulation of
the domain. This discrete version is much faster than Du et al.’s
continuous ACVT approach, at the expense of slightly degraded
mesh quality. Sun et al. [2011] introduced a hexagonal Minkows-
ki metric into ACVT optimization, in order to suppress obtuse tri-
angles. Compared to these ACVT approaches, our particle-based
scheme avoids the construction of AVD in the intermediate itera-
tions of energy optimization, thus shows much faster performance
as shown in Sec. 6.1.

Surface Meshing in Higher Dimensional Space:
Uniformly meshing surfaces embedded in higher dimensional space

has also been studied in the literature [Cañas and Gortler 2006; Ko-
vacs et al. 2010; Lévy and Bonneel 2012]. The work of Lévy and
Bonneel [2012] is most related to ours, since both can be considered
as using the framework of energy optimization in a higher dimen-
sional embedding space. They extended the computation of CVT
to a 6D space in order to achieve a curvature-adaptation. In partic-
ular, the anisotropic meshing on a 3D surface is transformed to an
isotropic one on the surface embedded in 6D space, which can be
efficiently computed by CVT equipped with Voronoi Parallel Lin-
ear Enumeration [Lévy and Bonneel 2012]. However, it does not
provide users with the flexibility to control the anisotropy via an in-
put metric tensor field. Our approach is designed to handle the more
general anisotropic meshing scenario where a user-desired metric is
specified.

Refinement-Based Delaunay Triangulation:
Anisotropic versions of point insertion in Delaunay triangula-
tion has been successfully applied to many practical application-
s [Borouchaki et al. 1997a; Borouchaki et al. 1997b; Dobrzynski
and Frey 2008]. Boissonnat et al. [2008b; 2011] introduced a De-
launay refinement framework, which is based on the goal to make
the star around each vertex xi to be consisting of the triangles that
are exactly Delaunay for the metric associated with xi. In order
to “stitch” the stars of neighboring vertices, refinement algorithm-
s are proposed to add new vertices gradually to achieve the final
anisotropic meshing. Our approach is different and consists in op-
timizing all the vertices of the mesh globally. Another difference
is that we compute the dual of the connected components of the
RVD [Yan et al. 2009] instead of the RDT. The results are com-
pared in Sec 6.3.

Particle-Based Anisotropic Meshing:
Turk [1992] introduced repulsive points to sample a mesh for the
purpose of polygonal remeshing. It was later extended by Witkin
and Heckbert [1994] who used particles equipped with pair-wise
Gaussian energy to sample and control implicit surfaces. Meyer
et al. [2005] formulated the energy kernel as a modified cotangen-
t function with finite support, and showed the kernel to be near-
ly scale-invariant as compared to the Gaussian kernel. It was lat-
er extended to handle adaptive, isotropic meshing of CAD mod-
els [Bronson et al. 2012] with particles moving in the parametric
space of each surface patch. All these methods are only targeting
isotropic sampling of surfaces.

To handle anisotropic meshing, Bossen and Heckbert [1996] incor-
porated the metric tensor into the distance function d(x,y), and
use f(x,y) = (1 − d(x,y)4) · exp(−d(x,y)4) to model the re-
pulsion and attraction forces between particles. Shimada and his
co-workers proposed physics-based relaxation of “bubbles” with a
standard second-order system consisting of masses, dampers, and
linear springs [Shimada and Gossard 1995; Shimada et al. 1997;
Yamakawa and Shimada 2000]. They used a bounded cubic func-
tion of the distance to model the inter-bubble forces, and further
extended it to anisotropic meshing by converting spherical bubbles
to ellipsoidal ones. Both Bossen et al. and Shimada et al.’s works
require dynamic population control schemes, to adaptively insert or
delete particles/bubbles in certain regions. Thus if the initialization
does not have a good estimation of the number of particles needed
to fill the domain, it will take a long time to converge.

The method proposed in this paper is very similar to the idea
of Adaptive Smoothed Particle Hydrodynamics (ASPH) [Shapiro
et al. 1996] which uses inter-particle Gaussian kernels with an
anisotropic smoothing tensor. However, as addressed in Sec. 3.3,
ASPH directly formulates the energy in the original space without
using the embedding space concept. To compute the forces between
particles, the gradient of the varying metric tensor has to be ignored
due to numerical difficulty. This treatment will lead to inaccurate



anisotropy in the computed mesh as shown in Fig. 4, when there are
mild or significant variations in the metric.

Relation with the Theory of Approximation:
It has been studied in the theory of approximation [D’Azevedo
1991; Shewchuk 2002] that anisotropy is related to the optimal ap-
proximation of a function with a given number of piecewise-linear
triangular elements. The anisotropy of the optimal mesh can be
characterized, and optimization algorithms can be designed to best
approximate the given function. The continuous mesh concept in-
troduced by Loseille and Alauzet [2011a; 2011b] provides a rela-
tionship between the linear interpolation error and the mesh pre-
scription, which has resulted in highly efficient anisotropic mesh
adaptation algorithms. The relationship between anisotropic mesh-
es and approximation theory has also been studied for higher-order
finite elements [Mirebeau and Cohen 2010; Mirebeau and Cohen
2012], which leads to an efficient greedy bisection algorithm to
generate optimal meshes.

Other Related Works:
This paper only focuses on anisotropic triangular meshing, which
is different from other works handling anisotropic quad-dominant
remeshing [Alliez et al. 2003; Kovacs et al. 2010; Lévy and Liu
2010; Zhang et al. 2010]. The notion of anisotropy has also been
applied to the blue noise sample generation [Li et al. 2010].

3 The Particle Approach

Considering each vertex as a particle, the potential energy be-
tween the particles determines the inter-particle forces. When the
forces applied on each particle become equilibrium, the particles
reach the optimal balanced state with uniform distribution. To han-
dle anisotropic meshing, we utilize the concept of “embedding s-
pace” [Nash 1954; Kuiper 1955]. In such high-dimensional em-
bedding space, the metric is uniform and isotropic. When the forces
applied on each particle reach equilibrium in this embedding space,
the particle distribution on the original manifold will exhibit the
desired anisotropic property.

Basic Framework: Given n particles with their positions X =
{xi|i = 1 . . . n} on the surface Ω which is embedded in Rm space,
we define the inter-particle energy between particles i and j as:

Eij = e
−

∥xi−xj∥
2

4σ2 . (5)

Here σ, called kernel width, is the fixed standard deviation of the
Gaussian kernels. In Sec. 4.1 we will discuss how to choose an
appropriate size of σ. Clearly, Eij = Eji.

The gradient of Eij w.r.t. xj can be considered as the force Fij

applied on particle j by particle i:

Fij =
∂Eij

∂xj
=

(xi − xj)

2σ2
e
−

∥xi−xj∥
2

4σ2 . (6)

Analogous to Newton’s third law of motion, we have Fij = −Fji.
We want to note that the formulation of Eq. (6) is similar to the
particle repulsion/attraction idea of Witkin and Heckbert [1994].

By minimizing the total energy E =
∑

i

∑
j ̸=i E

ij with L-
BFGS [Liu and Nocedal 1989], we can get a uniform isotropic sam-
pling, where the forces applied on each particle reach equilibrium.
It is shown in the supplementary Appendix that this particle-based
energy formulation is fundamentally equivalent to Fattal’s kernel-
based formulation [2011], for the uniform isotropic case. However,
Fattal’s method does not handle anisotropic case. For non-uniform
isotropic case, our analysis in Appendix shows the difference with
respect to Fattal’s approach, from both theoretical viewpoints and
experimental results.

Figure 3: A simple example of an embedding function that trans-
forms an original 2D anisotropic surface Ω (left) into the surface Ω
(right) embedded in a higher dimensional space (3D in this exam-
ple) where the metric is uniform and isotropic. In the general case
a higher number of dimensions is required for Ω.

3.1 Anisotropic Case

The top-left image of Fig. 3 shows a representation of a 2D metric
field M. The figure shows a set of points (black dots) and their
associated unit circles (the bean-shaped curves, that correspond to
the sets of points equidistant to each black dot). The bottom-left
image of Fig. 3 shows the ideal mesh governed by such metric field:
the length of the triangle edges, under the anisotropic distance, are
close to be equal.

For this simple example of Fig. 3, one can see that the top-left im-
age can be considered as the surface in the top-right image “seen
from above”. In other words, by embedding the flat 2D domain
as a curved surface in 3D, one can recast the anisotropic meshing
problem as the isotropic meshing of a surface embedded in higher-
dimensional space.

In general, for an arbitrary metric M, a higher-dimensional space
will be needed [Nash 1954; Kuiper 1955]. We now consider that the
surface Ω is mapped to Ω that is embedded in a higher-dimensional
space Rm. We simply call Rm as the embedding space in this pa-
per. Suppose the mapping function is ϕ: Ω → Ω, where Ω ⊂ Rm,
Ω ⊂ Rm, and m ≤ m. Let us denote the particle positions on
this surface Ω by X = {xi | xi = ϕ(xi), i = 1 . . . n}. A unifor-
m sampling on Ω can be computed by changing the inter-particle
energy function Eij of Eq. (5) as follows, hence defining E

ij
:

E
ij

= e
−

∥xi−xj∥
2

4σ2 . (7)

The gradient of E
ij

w.r.t. xj , i.e., the force F
ij

in the embedding
space, can be defined similarly as:

F
ij

=
∂E

ij

∂xj
=

(xi − xj)

2σ2
e
−

∥xi−xj∥
2

4σ2 . (8)

3.2 Our Computational Approach

We show in this subsection how to optimize E
ij

without referring
to the coordinates of Ω in the embedding space.



From the introduction of Sec. 2.1, we have seen that introducing
anisotropy means changing the definition of the dot product. If
we consider two small displacements v and w from a given lo-
cation x ∈ Ω, then they are transformed into v = J(x)v and
w = J(x)w, where J(x) denotes the Jacobian matrix of ϕ at x.
The dot product between v and w is given by:

⟨v,w⟩ = vTJ(x)TJ(x)w = vTM(x)w. (9)

In other words, given the embedding function ϕ, the anisotropy M
corresponds to the first fundamental form of ϕ. If we now suppose
that the anisotropy M(x) is known but not the embedding function
ϕ, it is still possible to compute the dot product between two vectors
in embedding space around a given point.

3.2.1 Computing the Energy Function

We now consider the inter-particle energy function in Eq. (7). Con-
sider neighboring particles i and j. We use the Jacobian matrix
evaluated at their middle point: xi+xj

2
. In the following we de-

note Jij = J(
xi+xj

2
), Mij = M(

xi+xj

2
), Qij = Q(

xi+xj

2
), and

Q′
ij = Q′(

xi+xj

2
) (see Sec. 2.1), for notational simplicity. Since

the middle point is close to both xi and xj , it is reasonable to make
the following approximation:

xi − xj = ϕ(xi)− ϕ(xj) ≈ Jij(xi − xj). (10)

Thus the exponent in the term E
ij

can be approximated as:

∥xi − xj∥2 = ⟨xi − xj ,xi − xj⟩
≈ (xi − xj)

TJT
ijJij(xi − xj)

= (xi − xj)
TMij(xi − xj).

(11)

Our inter-particle energy function can be approximated by:

E
ij ≈ e

−
(xi−xj)

T Mij(xi−xj)

4σ2 . (12)

The total energy is simply:

E =
n∑

i=1

n∑
j=1,j ̸=i

E
ij

(13)

3.2.2 Computing the Force Function

Using Eq. (10) and Eq. (11), the inter-particle forces of Eq. (8) be-
comes:

F
ij ≈ Jij(xi − xj)

2σ2
e
−

(xi−xj)
T Mij(xi−xj)

4σ2 . (14)

Here, for a particle i, different neighbors j have different Jij , which
essentially encodes the variation of the metric.

The total force applied on each particle i is simply:

F
i
=

∑
j ̸=i

F
ji
. (15)

Note that the expression in Eq. (14) still depends on the Jacobian
matrix Jij . In our case, neither the embedding function ϕ nor its
Jacobian is known. Therefore, we propose below an approximation
of Eq. (14) that solely depends on the anisotropy field M(x).

We denote the set of particle i’s neighbors as N(i), and denote the
vectors vij = xi − xj , j ∈ N(i). To better understand Jij , let us

explore the relationship between the matrices Jij and Qij . Jij is a
m×m matrix, where m is the dimension of the embedding space,
and m is either 2 or 3, depending on whether Ω is a 2D domain or
a 3D surface. Consider the QR decomposition: Jij = Uij

[
Pij
0

]
,

where Uij is a m×m unitary matrix (i.e. a rotation matrix in Rm),
Pij is a m × m matrix, and 0 is a (m − m) × m block of zeros.
Then:

Mij = JT
ijJij = PT

ijPij , (16)

since UT
ijUij = I.

As mentioned in Sec. 2.1, if both Sij and Rij are given by users,
then we can compose them and define Qij = SijRij ; if a smooth
metric Mij is given by users, we can use its square root Q′

ij =√
Mij . In the following derivation, both Qij and Q′

ij will lead to
the same approximation technique. So we simply use Qij in the
following discussion.

From Eq. (16) we can see that Pij is exactly Qij up to a rotation,
i.e., Pij = OijQij where Oij is a m×m rotation matrix. We can
simply represent Jij as:

Jij = Uij

[
OijQij

0

]
= Wij

[
Qij

0

]
, (17)

where Wij is a rotation matrix in Rm:

Wij = Uij

[
Oij 0

0 I

]
. (18)

If the metric field M(x) is smooth, then it is reasonable to approx-
imate the rotation matrix Wij with Wi, where Wi is the rotation
matrix of Eq. (18) evaluated at xi. Thus for j ∈ N(i), the m-
dimensional vectors Jijvij in Eq. (14) can be approximated by:

Jijvij = Wij

[
Qij
0

]
vij ≈ Wi

[
Qijvij

0

]
. (19)

Then the force vector on particle i in Eq. (15) becomes:

F
i

=
∑

j ̸=i

Jijvij

2σ2 e
−

(xi−xj)
T Mij(xi−xj)

4σ2

≈
∑

j ̸=i
1

2σ2Wi

[
Qijvij

0

]
e
−

(xi−xj)
T Mij(xi−xj)

4σ2

= Wi

∑
j ̸=i

1
2σ2

[
Qijvij

0

]
e
−

(xi−xj)
T Mij(xi−xj)

4σ2 .
(20)

If we define the m-dimensional forces:

F̃ij =
Qij(xi − xj)

2σ2
e
−

(xi−xj)
T Mij(xi−xj)

4σ2 , (21)

and
F̃i =

∑
j ̸=i

F̃ji, (22)

then the m-dimensional force F
i

in Eq. (20) is simply:

F
i ≈ Wi

[
F̃i

0

]
= ViF̃

i, (23)

where Vi = Wi

[
Im×m

0

]
, and Im×m is a m×m identity matrix.

Note that F
i

is the gradient in the higher-dimensional space Rm,
while F̃i is in the original space Rm. They are related by the ma-
trix Vi in Eq. (23), which builds up a bijection between them. We
can see that they can guide the optimization to arrive at the same
equilibrium, since F

i
= 0 ⇔ F̃i = 0. Thus for the energy op-

timization purpose, we can simply replace Eq. (15) with Eq. (22)
which can be computed directly on the original surface Ω.



The idea behind our force approximation can be interpreted as fol-
lows. At a given particle i, different neighboring pairs (i, j1) and
(i, j2) may be equipped with different metrics Mij1 and Mij2 (as
well as different Jacobians Jij1 and Jij2 ). The difference between
Jij encodes the variation of the metric locally around particle i.
Jij includes both “metric” part (Qij) and “embedding rotation”
part (Wij) (Eq. (19)). Wij transforms the tangent plane at xij in
the original space into the tangent plane in embedding space. Our
approach uses the exact variation of neighboring metric Qij , and
approximates the embedding rotation Wij with Wi in Eq. (19).
Thus, the variation of embedding rotation is ignored in each parti-
cle’s neighborhood, but the variation of metric is accounted.

In summary, we can optimize the uniform isotropic sampling on Ω
with the approximated energy of Eq. (12) and force of Eq. (21) us-
ing L-BFGS optimizer. They are both computed using the particle
positions X on Ω, together with the metric M. If M is given by
users, we use its square root Q′ instead of Q in Eq. (21). Although
we utilize the elegant concept of “embedding space” to help devel-
op our formulation for anisotropic meshing, we do NOT need to
compute such an embedding space.

3.3 Importance of the Embedding Space

Anisotropic meshing is defined by the Riemannian metric M, to lo-
cally affine-transform triangles into a “unit” space while enforcing
the transformed triangles to be uniformly equilateral. Thus it is nat-
ural to directly define the energy optimization problem in this “unit”
space. However, the metrics on each point can be different. With-
out establishing a coherent “unit” space, we cannot describe how
these local affine copies of “unit” spaces can be “stitched” together.
Our approach coherently considers all these local “unit” spaces by
embedding the surface Ω into high-dimensional space. Our energy
in Eq. (7) is designed exactly by the definition of “anisotropy” – the
affine-transformed triangles in Ω should be uniformly equilateral
(the particles should be uniformly distributed). This definition also
leads to very efficient computations of forces in Eq. (21).

We want to emphasize that: without using this embedding space,
the definition of energy function and the corresponding force for-
mulation would be inconsistent with the definition of anisotropic
mesh and thus lead to incorrect results. If we do not use this high-
dimensional embedding space, the most intuitive formulation of en-
ergy will be Eq. (12). We elaborate on that and give some compar-
isons below.

Ignoring the Gradient of Metric (ASPH Method):
We need to note that the metric Mij in Eq. (12) is dependent on
the positions of particles xi and xj . Therefore, the force formula-
tion will involve the gradient of Mij w.r.t. xj , which is numerically
very difficult to compute. In the method of Adaptive Smoothed Par-
ticle Hydrodynamics (ASPH) [Shapiro et al. 1996], they use inter-
particle Gaussian kernels and incorporated an anisotropic smooth-
ing kernel to define the potential energy between particles, which
is similar to Eq. (12). However, it is mentioned in their paper (Sec.
2.2.4 of [Shapiro et al. 1996]) that the gradient of metric term is
ignored when computing the gradient of such inter-particle energy.
Thus it leads to the following ASPH force formulation:

F̂ij ≈ Mij(xi − xj)

2σ2
e
−

(xi−xj)
T Mij(xi−xj)

4σ2 . (24)

It is easy to see that Eq. (24) differs to Eq. (21) by only replacing
Qij with Mij . Thus if the metric field is not constant, these two
forces will lead to different local minima.

Our method in Eq. (21) only ignores the variation of embedding ro-
tation in each particle’s neighborhood, while the variation of metric

is accounted. As confirmed in our experiments in Fig. 4, this has a
measurable influence on the quality of generated meshes.

Ignoring the Variation of Jacobian Matrix:
Another approximation is to apply the pseudo-inverse of Jacobian
matrix in the expression of Eq. (14). In Eq. (14), Jij is different for
different neighbors j. If we approximate Jij with Ji in Eq. (14),
and then apply the pseudo-inverse of Ji, we arrive at the formula-
tion (without the leading Mij or Qij) as follows:

F̂ij ≈ (xi − xj)

2σ2
e
−

(xi−xj)
T Mij(xi−xj)

4σ2 . (25)

We emphasize the difference with our method: this variation is ap-
proximating Jij with Ji in Eq. (14), while our method is approxi-
mating Wij with Wi in Eq. (19). As mentioned above, Jij con-
tains both “metric” part Qij and “embedding rotation” part Wij .
Thus the approximation of Jij with Ji will potentially “erase” the
variation of metric between neighboring particles.

To see their different effects on anisotropic mesh generation, we
conduct the energy optimization in a 2D square domain using the
following three choices of forces: (1) our force in Eq. (21); (2) the
ASPH force in Eq. (24); and (3) the force in Eq. (25). As shown
in Fig. 4, the 2D square domain is equipped with the background
tensor field: M(x) = diag{Stretch(x)2, 1}, where the field of
Stretch(x) is in the range of [0.577, 9]. In this experiment, we use
a spatially nonuniform metric field – if M(x) is spatially uniform,
then all the three forces will lead to the same particle configuration.

The comparative measurements of the quality of the generated
anisotropic mesh are shown in Fig. 4, with triangle area quality
Garea, angle histogram, Gmin, Gavg , θmin, θavg , and %<30◦ ,
which are all defined in Sec. 4.5. The color-coded triangle area
quality of our method shows that the areas of triangles computed
using our force are uniform (all close to 1), which means the tri-
angle sizes are conforming to the desired density defined by the
metric tensor. From this experiment, we can see that performing
energy optimization using our force in Eq. (21) generates the ideal
anisotropic mesh, while optimizing the energy using the other two
alternative forces in Eq. (24) and Eq. (25) cannot, which illustrates
that formulating the energy optimization in the embedding space
with our approximation leads to a principled formulation of inter-
particle forces.

4 Implementation and Algorithm Details

Our particle-based method is summarized in Alg. 1 below. To help
reproduce our results, we further detail each component of the al-
gorithm and the implementation issues.

4.1 Kernel Width

The inter-particle energy as defined in Eq. (5) depends on the choice
of the fixed kernel width σ. The slope of this energy peaks at dis-
tance of

√
2σ and it is near zero at much smaller or much greater

distances. If σ is chosen too small then particles will nearly stop
spreading when their separation is about 5

√
2σ, because there is

almost no forces between particles. If σ is chosen too large then
nearby particles cannot repel each other and the resulting sampling
pattern will be poor. In this work, we choose σ to be proportional to
the average “radius” of each particle when they are uniformly dis-

tributed on Ω: σ = cσ

√
|Ω|/n, where |Ω| denotes the area of the

surface Ω in the embedding space, n is the number of particles, and
cσ is a constant coefficient. Note that our goal is to let the particles



Figure 4: Comparative experiments with 340 particles between (1)
optimization using our force in Eq. (21); and (2) optimization us-
ing ASPH force in Eq. (24); and (3) optimization using force in
Eq. (25). The color-coded triangle area quality shows our triangle
areas in Ω are uniform (all close to 1), which means the triangle
sizes are conforming to the desired density defined by the metric
tensor. Meanwhile, the triangle quality measurements show that
the triangles are much closer to regular triangles after being trans-
formed into embedding space.

be uniformly and isotropically sampled on Ω. From our extensive
experiments, we find out that the best isotropic mesh quality on Ω
can be achieved when cσ ≈ 0.3.

Given any input metric field M(x), the area of Ω is: |Ω| =∫
Ω

√
detM(x)ds. In this work the input surfaces are all trian-

gular meshes, with metric defined on each vertex. For each triangle
△abc with vertices a, b, and c, we simply approximate its area in
the embedding space as:

|△abc| =
√

det(
M(xa) +M(xb) +M(xc)

3
) · |△abc|, (26)

where |△abc| is its area on the original surface. After summing all
the areas of the triangles in the embedding space into |Ω|, we can

set σ = 0.3
√

|Ω|/n in our experiments.

In our implementation, for each particle we only compute the mutu-
al effects from the particles within a neighborhood of five standard
deviations (5σ), and use the Approximate Nearest Neighbor (AN-
N) library [Mount and Arya 1997] to quickly search such neighbor-
hoods. Our experiments show that such a truncated Gaussian ker-
nel (of 5σ range) works very well in practice, and generates regular
hexagonal patterns of particles, similar to the results of CVT [Du
et al. 1999; Liu et al. 2009]. For neighboring search in anisotropic
space, we use ANN data structure to find Euclidean nearest neigh-
bors within a larger range, and then we prune the spurious neigh-
bors w.r.t. the prescribed metric.

4.2 Particle Optimization Algorithm

For any input metric field M(x), we use the adaptive initialization
strategy of Valette et al. [2008], which distributes the initial sample
positions based on the probability of the density

√
detM(x).

Data: a surface Ω with metric M, and the desired number of
vertices n

Result: an anisotropic sampling X of Ω
Initialize particle locations X;
while stopping condition not satisfied do

Update the ANN data structure for the current sampling X;
for each particle i do

Get particle i’s neighbor N(i) from ANN;
for each particle j ∈ N(i) do

Compute E
ij

using Eq. (12);
Compute F̃ij using Eq. (21);

end
Sum the total force F̃i using Eq. (22);
Project F̃i to the surface tangent using Eq. (27);

end
Sum the total energy E in Eq. (13);
Run L-BFGS with E and {F̃i}, to get updated locations X;
Project X onto the surface;

end
Algorithm 1: Anisotropic Particle Optimization with Metric M.

We use the L-BFGS algorithm [Liu and Nocedal 1989] to optimize
the sample positions. It is a quasi-Newton algorithm which can
quickly find the minimum of the energy for our particle-based sam-
pling. For each iteration of L-BFGS optimization, we update the
total energy E in Eq. (13), and update its gradient by computing
the total force F̃i applied on each particle i as in Eq. (22). The
gradient in Eq. (22) used by the L-BFGS optimizer also needs to be
projected onto the tangent space TΩ of the surface:

F̃i|TΩ = F̃i − [F̃i · n(xi)]n(xi), (27)

where n(xi) is the unit normal of the surface at xi.

During L-BFGS optimization, the samples need to be constrained
on the surface Ω. In each iteration, the updated sites xj need to
be projected to their nearest locations on Ω, if they are out of the
boundary or out of the surface. This optimization process is iterat-
ed until convergence by satisfying a specified stopping condition,
e.g., the magnitude of the gradient or the maximal displacement of
particles is smaller than a threshold. Alg. 1 shows the details of our
anisotropic particle optimization.

4.3 Mesh Generation

After the optimization of particle positions, the final output mesh
is generated as the dual of the Anisotropic Voronoi Diagram
(AVD) [Du and Wang 2005] restricted on the surface [Yan et al.
2009]. The dual of the connected components of Restricted Voronoi
Diagram and topology control ensure that the components are disc-
s (possibly by inserting points) [Yan et al. 2009; Lévy and Liu
2010]. This ensures homotopy equivalence in Nerve theorem [Bor-
suk 1948]. But we do not ensure homeomorphism since the con-
ditions of [Edelsbrunner and Shah 1994] are not satisfied, which
is considered as a limitation. Note that the mesh only needs to be
computed once after the energy optimization. Thus it has signif-
icant advantage over all prior approaches based on ACVT, since
they need to compute an AVD in each iteration of the optimization
process. We compare both the computation speed and the quality
of generated meshes with existing anisotropic meshing approaches
in Sec. 6.



4.4 Extension to 6D Surfaces

Our particle-based optimization framework can be easily extended
to handle the 6D embedding case as suggested by Lévy and Bon-
neel [2012]. The basic idea of Lévy and Bonneel’s approach is to
use the embedding ϕ : Ω → R6 defined by:

ϕ(x) = [x, y, z, snx, sny, snz]
T , (28)

where x = [x, y, z]T , n(x) = [nx, ny, nz]
T is the normal to Ω,

and s ∈ (0,∞) is a user-defined parameter specifying the desired
anisotropy of curvature-adaptation. Lévy and Bonneel solved the
restricted CVT problem on such 6D surfaces, while in our frame-
work we can simply perform optimization using the energy of E-
q. (7) and the force of Eq. (8), since the embedding function ϕ is
known. After energy optimization, the final mesh can be recon-
structed by computing the Restricted Voronoi Diagram and its dual
triangulation, using the Voronoi parallel linear enumeration.

4.5 Quality Measurements

To measure the isotropic triangular mesh quality, we use the criteria
suggested by Frey and Borouchaki [1997]. The quality of a triangle
is measured by G = 2

√
3 S
ph

, where S is the triangle area, p is its
half-perimeter, and h is the length of its longest edge. Gmin is the
minimal quality of the triangles, and Gavg is the average quality.
θmin is the smallest angle of the minimal angles of all triangles, and
θavg is the average of the minimal angles of all triangles. %<30 ◦ is
the percentage of triangles with their minimal angles smaller than
30 ◦. In this paper, the angle histogram is also provided to show the
angles of all generated triangles.

In anisotropic surface meshing, for each triangle △abc we use it-
s approximated metric M(△abc) = M(xa)+M(xb)+M(xc)

3
. Then

we use the corresponding Q(△abc) or Q′(△abc) matrix to affine-
transform the triangle △abc, and use the above isotropic mesh qual-
ity measurements (Gmin, Gavg, θmin, θavg,%<30 ◦ and angle his-
togram) to check how close it is compared to a regular triangle in
embedding space. We also define the following Area Quality Garea

for each triangle △i, to evaluate how uniform are the areas of their
affine-transformed copies:

Garea(△i) =
|△i|∑nt

j=1 |△j |/nt

, (29)

where nt is the total number of triangles and |△i| is the area of
the affine-transformed triangle. In the optimal anisotropic meshing,
each triangle will have the same area of |△i|. Thus the best value
of Garea for the generated anisotropic triangles is 1.

5 Results

We implement our algorithms using both Microsoft Visual C++
2010 and Matlab R2010a. The experiments of meshing in 2D do-
mains are coded in Matlab, while the meshing of surfaces are coded
with C++. For the hardware platform, the experiments in Sec. 5.3
are tested with OpenMP parallel implementation on a laptop com-
puter with Intel(R) Core(TM) i7-3720QM CPU with 2.60GHz, 8
threads (4 cores). The other experiments are tested with single-core
implementation on a desktop computer with Intel(R) Xeon X5160
CPU with 3.00GHz. The users give their desired numbers of output
vertices for all the experiments.

Figure 5: Anisotropic meshing with 2,000 particles on a 2D
domain with metric M(x) = diag{Stretch(x)2, 1}, where
Stretch(x) = 1, 000.

5.1 Meshing in 2D Domains with Given Metrics

Fig. 5 shows the meshing result of a 2D square domain with 2, 000
samples, given a uniform metric M(x) = diag{Stretch(x)2, 1},
where Stretch(x) = 1, 000. Fig. 6 shows the anisotropic mesh-
ing result of a 2D square domain with 3, 000 samples, with a
varying metric tensor M(x) = diag{Stretch(x)2, 1}, where
Stretch(x) ∈ [1, 100].

Fig. 7 shows the meshing result with 20, 000 particles on a 2D do-
main of “Mesh Font” equipped with complex tensor fields, which
includes both isotropic (graded with varying density) and anisotrop-
ic circular tensor field. The iso-contours of anisotropic distance to
each black dot are given in red circles and ellipses in the two “zoom-
in” parts. In Fig. 8, we use the “Mesh Font” example of Fig. 7 to
show the comparison of meshing results between: (1) given S(x)
and R(x), we use Q(x) = S(x)R(x) in the force of Eq. (21);
and (2) given M(x), we use Q′(x) =

√
M(x) in the force of E-

q. (21). In the two “zoom-in” parts of the “Mesh Font” example,
we can see that their mesh qualities are very close to each other. If
M(x) is given, in the isotropic area, computing Q(x) from M(x)
cannot give us a unique and smooth field of Q(x), since the two
eigenvalues in the SVD decomposition of M(x) are equivalent. In
this case, we should use Q′(x) instead of Q(x), as mentioned in
Sec. 2.1.

5.2 Meshing on 3D Surfaces with Given Metrics

Fig. 9 shows the isotropic meshing of the Human Head surface
controlled by a background density field ρ(x) = |Kmin|+|Kmax|

2
,

where Kmin and Kmax are the principal curvatures. The original
input surface has 53, 696 triangles, and is remeshed with 10, 000
particles running in 100 iterations (505.79 sec).

For testing anisotropic meshing on 3D surfaces, we use the follow-
ing metric tensor:

M = [vmin,vmax,n]diag(s1
2, s2

2, 0)[vmin,vmax,n]
T , (30)

where vmin and vmax are the directions of the principal curvatures,
n is the unit surface normal. s1 and s2 are two user-controlled
stretching factors along principal directions.



Figure 6: Anisotropic meshing with 3,000 particles on a 2D do-
main with varying metrics M(x) = diag{Stretch(x)2, 1}, where
Stretch(x) ∈ [1, 100].

Figure 7: Meshing with 20,000 particles on a 2D domain e-
quipped with the combination of two metric fields: (1) the
isotropic density metric M(x) = ρ(x)I, where ρ(x) ∈
[1, 100]; and (2) the anisotropic circular varying metric M(x) =
R(x)T diag{Stretch(x)2, 1}R(x), where Stretch(x) ∈ [1, 10],
and R(x) is the rotation field shown in the middle part.

The experiments on the Cyclide (Fig. 1) and Ellipsoid surfaces
(Figs. 2 and 10) are computed by curvature-based metric tensor
fields. We use the metric of Eq. (30) with s1 =

√
Kmin and

s2 =
√
Kmax, where Kmin and Kmax are the principal curva-

tures. The Cyclide surface in Fig. 1 has anisotropic stretching ratio
s2
s1

∈ [1, 18]. Fig. 10 shows the anisotropic meshing of an ellipsoid
surface with large stretching ratio s2

s1
∈ [1, 100].

The Club and Hand surfaces (Fig. 1) and the Car surface (Fig. 11)
are remeshed under user-specified stretching factors. As suggested
by Alliez et al. [2003], Laplacian smoothing is applied to both the
stretching factors and directions, to ensure smoothness of the input

Figure 8: For the two “zoom-in” parts in Fig. 7, we compare the
meshing results of using Q(x) and Q′(x) in Eq. (21).

Figure 9: Isotropic meshing with 10,000 output vertices of the Hu-
man Head surface with metric M(x) = ρ(x)I, where the density
ρ(x) = |Kmin|+|Kmax|

2
, with Kmin and Kmax being the principal

curvatures.

Figure 11: The anisotropic meshing of the Car surface with the
user-defined metric tensor field.

metric field. Tab. 1 gives the statistics of the 3D surfaces meshed
with given metrics.



Figure 10: The anisotropic meshing of Ellipsoid surface with large stretching ratio s2
s1

∈ [1, 100]. Note that the “End Part” is rendered with
orthographic projection along its long-axial direction, to better show the isotropy.

Table 1: Statistics of the 3D surfaces with given metrics and their
computation times.

Model Figure Input # Vertex Output # Vertex Stretch # Iteration Time (sec)

Cyclide 1 129, 600 8, 000 [1, 18] 50 155.84

Hand 1 145, 916 30, 000 [1, 10] 100 1, 263.55

Club 1 30, 000 10, 000 [1, 6] 100 219.60

Ellipsoid 10 40, 962 6, 000 [1, 100] 100 102.38

Car 11 197, 948 30, 000 [1, 6] 100 899.789

5.3 Meshing on 6D Surfaces for Curvature-Adaptation

As discussed in Sec. 4.4, we can easily extend our particle-based
optimization to the 6D embedding space to achieve a curvature-
adapted anisotropic meshing, as suggested by Lévy and Bon-
neel [2012]. In this experiment, we implement our isotropic 6D
optimization algorithm with OpenMP parallel programming, since
each particle’s computation of energy and force is independent and
can be easily parallelized. Our algorithm is running on a quad-core
(8 threads) CPU as mentioned above, under the similar environ-
mental setting as Lévy and Bonneel’s work.

Fig. 12 shows the anisotropic remeshing of the Mechanism surface
with 50, 000 particles. The input surface has 714, 508 triangles, and
the computation time is 38.97sec for 100 iterations. Fig. 13 shows
the anisotropic remeshing of the F1 surface with 60, 000 particles.
The original input surface has 1, 005, 993 triangles, and the com-
putation time is 54.93sec for 100 iterations. The angle histogram
shown in the figures are the quality of isotropic triangles in 6D s-
pace.

As a comparison, Lévy and Bonneel’s Vorpaline algorithm is al-
so parallelized with OpenMP. The same experiments in their paper
are tested on a machine with Intel(R) Core(TM) i7-2720QM CPU
2.20GHz, 8 threads with hyperthreading activated. For these two
surfaces they both run 5 iterations of Lloyd then 30 iterations of L-
BFGS. The Mechanism surface takes 28.92sec and the F1 surface
takes 35.93sec in their platform.

It can be seen that for each iteration, our particle-based computation
is more efficient (38.97sec/100iter < 28.92sec/35iter), since
it just need to sum up inter-particle energies and forces, instead
of computing the restricted Voronoi diagram. However, the CVT-

Figure 12: Anisotropic mesh with 50,000 output vertices of the
Mechanism surface generated by our particle-based optimization
in 6D space.

based energy optimization may converge faster with fewer number
of iterations.

6 Comparisons

In this section, we show our comparative analysis and experiments
with other anisotropic meshing approaches, including ACVT ap-
proaches (Sec. 6.1), other particle-based approaches (Sec. 6.2), and
the Delaunay refinement approach (Sec. 6.3). To compare with oth-
er anisotropic triangulation methods, we use the same number of
output vertices.

6.1 Comparison with ACVT

We compare the generated surface mesh quality and computation-
al speed between our method and two ACVT methods: Du and
Wang’s method with triangle clipping strategy [Du and Wang 2005]



Figure 15: Comparison with Valette et al.’s meshing result on the circular anisotropic tensor field (a) with the same initialization of 20, 000
samples. The unit square domain is tessellated by 50, 920 triangles as input. (b) Our meshing result. (c) Valette et al.’s meshing result.

Figure 13: Anisotropic mesh with 60,000 output vertices of the F1
surface generated by our particle-based optimization in 6D space.

Figure 14: Comparison with ACVT approaches with 8,000 output
vertices.

and Valette et al.’s discrete ACVT method [Valette et al. 2008]. Al-
l the three methods are implemented using Microsoft Visual C++
2010. In the following comparison, we only run through 50 iter-

Table 2: Comparison of meshing quality for the Cyclide surface.

Method Time Gmin Gavg θmin θavg %<30◦

Ours 155.84s 0.0930 0.8666 5.0327 49.6754 0.0446%

Du and Wang’s 19, 538.86s 0.1065 0.8590 5.2914 48.7769 0.1563%

Valette et al.’s 863.15s 0.0875 0.8286 5.2440 46.3001 0.2720%

ations, and re-sample 8, 000 vertices on the Cyclide surface with
stretching ratio s2

s1
∈ [1, 18].

Fig. 14 and Tab. 2 show the comparison results. On one hand, our
approach provides comparable mesh quality with ACVT method-
s. On the other hand, our approach has much faster computational
speed. From Tab. 2, we can see that our method is around 125
times faster than Du and Wang’s continuous ACVT method, and
around 5.5 times faster than Valette et al.’s discrete ACVT method.
The input Cyclide surface is finely triangulated, thus Valette et al.’s
method does not need to compute further subdivision as preprocess-
ing. We want to note that due to its discrete nature, Valette et al.’s
ACVT method does not work well for highly anisotropic stretching
if the input triangulated mesh are not fine enough (See Fig. 15).

We perform further comparison with Valette et al.’s method on a
unit square equipped with the circular anisotropic tensor field:

M(x) = R(x)T diag(Stretch(x)2, 1)R(x), (31)

with the rotation field R(x) and the stretching field Stretch(x)
shown in Fig. 15(a). The square domain is discretized with 50, 920
triangles, and initialized with the same 20, 000 samples. Fig. 15(b)
shows our converged anisotropic meshing result, and Fig. 15(c)
shows the meshing computed by Valette et al.’s discrete ACVT
method. When their method converges, we can see that their gen-
erated anisotropic mesh quality is much worse than ours: both
Gmin and θmin of their resulting mesh are close to zero. To fur-
ther test their method, we increase the number of domain trian-
gles to 509, 184, but the quality of their generated mesh is still
far from satisfactory: Gmin = 4.1851e − 005, Gavg = 0.7245,
θmin = 0.0017, θavg = 38.6006, %<30◦ = 21.75%. Using
the domain tessellation of 509, 184 triangles, the time needed for
Valette et al.’s method is 13, 195.80 sec, which is about 10 times
slower than our method for computing the result in Fig. 15(b).

6.2 Comparison with Other Particle-Based Methods

In this subsection, we compare the convergence rate and the gener-
ated 2D anisotropic mesh quality between our method and two oth-
er particle-based methods: Bossen and Heckbert’s method [1996]



and Shimada et al.’s method [1997]. All the three methods are im-
plemented using Matlab R2010a.

Bossen and Heckbert’s method is similar to Shimada et al.’s – they
both consider repulsion and attraction forces. Bossen and Heckbert
use f(x,y) = (1 − r(x,y)4) · exp(−r(x,y)4), where r(x, y) is
the distance function, to model the repulsion and attraction forces
between particles. Shimada et al. use a bounded cubic function of
the distance to model the inter-bubble forces. Both of their meth-
ods share the following same disadvantages: (1) Their methods
are based on inter-particle forces without an explicit energy for-
mulation. Thus it is hard to guarantee convergence and it needs
much more iterations by using only forces to guide particle veloci-
ties. As a comparison, our energy-based optimization is based on a
well-defined, smooth objective function, enabling efficient numeri-
cal optimization. (2) Both of their methods use adaptive population
control – vertex insertions and deletions along with retriangulation
or local bubble “population-check” according to the input metric
tensor, which is very time-consuming. They define a desired trian-
gle edge length or desired bubble size in accordance with the input
metric. It is difficult to know beforehand the appropriate number
of particles that is necessary and sufficient to fill the domain. Thus
they have to insert and delete particles adaptively during iterations.
If the initial number of particles is not close to the optimal number,
it may take a longer time to converge. In contrast, the performance
of our method is not affected by initial population, and the user is
allowed to set their desired number of output particles.

To perform the comparative experiment, we estimate the optimal
number of particles for both Bossen and Heckbert’s and Shimada et
al.’s methods using the concept of Ω in embedding space: we com-
pute the area of the embedding space by |Ω| =

∫
Ω

√
detM(x)ds,

and divide it by the uniform area of each particle in the embed-
ding space. Fig. 16 illustrates the meshing results of the three
methods, on a low anisotropy field Stretch(x) ∈ [1, 3.95], us-
ing the same random initialization of 340 particles. Here the
number of particles 340 is based on the above-mentioned popu-
lation estimation. Both their methods show slower convergence
rate than ours. If we run them on a slightly higher anisotropy
field Stretch(x) ∈ [2.53, 10] with 1, 000 particles, our method
converged in 500 iterations (674.17 sec), while Bossen and Heck-
bert’s method needs 10, 000 Iterations (8, 702.26 sec) and Shimada
et al.’s method needs 5, 460 Iterations (12, 702.26 sec). All these
experiments are shown in the supplementary videos.

6.3 Comparison with Delaunay Refinement Approach

In this subsection, we compare the result of Boissonnat et al.’s De-
launay refinement method [2011] with our particle-based optimiza-
tion approach, with the simple 6D extension (Sec. 4.4). We conduct
the following comparison on the Fertility surface with 13, 971 ver-
tices in the input mesh. The output anisotropic meshes consists
of 12, 480 vertices. From Fig. 17 we can tell visually that the mesh
gradation of our result is smoother than theirs. Since both two meth-
ods are based on curvature-guided adaptation, we use Hausdorff
distance to measure the approximation accuracy to the original in-
put surface. The Hausdorff distance of our result is 0.002266% of
the bounding-box’s diagonal length, while the Hausdorff distance
of their result is 0.005836%. From the triangle quality measure-
ments in Fig. 17, we can see that our result is better than theirs as
well.

In Tab. 3, we provide all the Hausdorff distances of our results, for
those meshes that are generated with curvature-adaptation. The dis-
tances are measured using the percentages w.r.t. the bounding-box’s
diagonal length. The details of these experiments are described in
Sec. 5.2 and Sec. 5.3.

Figure 16: Comparison with Bossen and Heckbert’s and Shimada
et al.’s methods, on 2D anisotropic meshing.

Table 3: Hausdorff distances between the input surfaces and our
generated anisotropic meshes.

Models Cyclide Ellipsoid (Fig. 2) Ellipsoid (Fig. 10) Mechanism F1

Input #Vertices 129, 600 10, 242 40, 962 357, 250 503, 914

Output #Vertices 8, 000 1, 000 6, 000 50, 000 60, 000

Hausdorff Dist. 0.000819% 0.002307% 0.000529% 0.001439% 0.003315%

7 Conclusion and Future Work

The bottleneck of speed in our current framework is the search of
neighboring particles. For isotropic meshing we can simply use
the ANN library to search particles within five standard deviations
(5σ). However, for anisotropic case such range of 5σ in the em-
bedding space needs to be mapped back to the original space, and
may result in very large range in Ω when the anisotropic stretching
ratio is high. We plan to explore more efficient neighbor-search s-
trategy for such high-anisotropy cases. In addition, we would like



Figure 17: Comparison of meshing results with 12,480 output
vertices between Boissonnat et al.’s Delaunay refinement and our
particle-based 6D optimization.

to explore other kernel functions which have faster decay, and see
how they affect the computational speed and mesh quality. Kernel
functions that can produce stronger forces, when particles are close
to each other, may also result in faster convergence rate. Our cur-
rent work is only focusing on 2D domains and surfaces. It is still
a challenging open problem to solve the 3D anisotropic meshing.
Extending our particle-based framework to 3D volumes could po-
tentially lead to some solutions which are both efficient and robust
for 3D anisotropic meshing. We will investigate these interesting
problems in the future.
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