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Abstract

This article introduces a representation of dynamic meshes, adapted
to some numerical simulations that require controlling the volume of ob-
jects with free boundaries, such as incompressible fluid simulation, some
astrophysical simulations at cosmological scale, and shape/topology opti-
mization. The algorithm decomposes the simulated object into a set of
convex cells called a Laguerre diagram, parameterized by the position of N
points in 3D and N additional parameters that control the volumes of the
cells. These parameters are found as the (unique) solution of a convex op-
timization problem – semi-discrete Monge-Ampère equation – stemming
from optimal transport theory. In this article, this setting is extended
to objects with free boundaries and arbitrary topology, evolving in a do-
main of arbitrary shape, by solving a partial optimal transport problem.
The resulting Lagrangian scheme makes it possible to accurately control
the volume of the object, while precisely tracking interfaces, interactions,
collisions, and topology changes.

1 Introduction

Some numerical simulations require to control the volume of an object while
allowing it to change shape and topology. For instance, in incompressible fluid
simulation (see e.g. [1]), the volume of fluid is conserved, while the shape of the
fluid can considerably vary throughout the simulation, and can change topol-
ogy (split and merge). In some astrophysic simulations [2, 3, 4], the Universe
considered at a cosmological scale can be modeled as a ”fluid”1. With the sim-
plifying assumption that this fluid obeys the incompressible Euler equation, one
can reconstruct the full dynamics of the Universe from the knowledge of the
density fluid at current time [2, 3, 4]. To name another example, in shape and

1The ”atoms” of this ”fluid” correspond to galaxy clusters !
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topology optimization (see e.g. [5]), one wants to find the shape of a given vol-
ume with maximum resistance (minimum compliance). Again, in this example,
the considered shape can have an arbitrary topology, that can change during
computation. There are several difficulties in the three applications mentioned
above: (1) choosing a representation that can account for changes of topology,
(2) controlling the volume, (3) tracking the interfaces and the changes of topol-
ogy, and (4) tracking the interactions and the collisions between the simulated
object and the boundary of the domain.

Clearly, to account for changes of topology, it is possible to represent the ob-
ject as a density supported by a Eulerian grid (see for instance the homogeneiza-
tion method for shape optimization [6]) and enforce the constraint of volume
conservation using Lagrange multipliers or similar techniques, then track iso-
surfaces in this grid. However, we think it is interesting to experiment with an
alternative Lagrangian representation that directly represents the simulated ob-
ject and its boundary. The proposed alternative representation has the following
properties:

� The new representation is a Lagrangian mesh that continuously depends
on a set of N points in 3D space;

� each cell of the mesh has a prescribed volume for any position of the N
points;

� changes of topology, interfaces, interactions and collisions are accurately
tracked.

The approach builds on recent advances in numerical optimal transport,
that resulted in Lagrangian schemes for fluid simulation [7] or early Universe
reconstruction [4]. In the works cited above, the object fills the entire simulation
domain. In the rest of this article, after summarizing the underlying semi-
discrete optimal transport method (Section 2), I show how the mathematical
setting can be extended it to objects with free boundaries, by solving a partial
optimal transport problem (Section 3). Then I detail the numerical algorithm
that can solve this partial optimal transport problem (Section 4). Finally, I
demonstrate some applications of the method to free-surface fluid simulation
(Section 5).

2 Volume control through optimal transport

In this section, I summarize the existing semi-discrete optimal transport frame-
work with the objective of giving an intuition on the aspects that are important
to control the volume of the cells in a Lagrangian mesh 2. Then, in the next
section, I explain how to extend this framework to simulated objects with free
boundaries.

2The reader is referred to [8, 9, 10, 11, 12, 13] for an extensive and general introduction on
optimal transport.
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We suppose for now that the simulated object entirely fills a simulation
domain Ω, that can be the 2D unit square or the 3D unit cube3. The goal is
now to find a partition of Ω into a set of N cells Vi with the following properties:

� the set of cells (Vi)
N
i=1 depends on a set of parameters (xi)

N
i=1. These

parameters can be interpreted as 2D (resp. 3D) points (hence a Lagrangian
representation);

� the area (resp. volume) of each Vi’s is controlled: |Vi| = νi for some

prescribed ν′is such that
∑N
i=1 νi = |Ω| = 1;

� the cells Vi continuously depend on the xi’s;

The Monge-Ampère equation

Such a Lagrangian mesh parameterization can be obtained through a specific
(semi-discrete) version of the Monge-Ampère (MA) equation. In the general
(continuous) setting, the MA equation may be thought of as seeking for an
application T : Ω → Ω with controlled Jacobian, by solving for a potential
ψ : Ω→ R:{

det(Hess(ψ)(x)) = ν(x) ∀x ∈ Ω

s.t. ψcc = ψ where ψc(x) = infy∈Ω[‖x− y‖2 − ψ(y)]
(1)

where ν : Ω → R+ is a square-integrable density4. In the constraint (second
line), ψc corresponds to the Legendre-Fenchel transform of ψ, and the condition
that applying it twice to ψ does not change ψ means that ψ is convex (because
the graph of ψcc corresponds to the convex hull of the graph of ψ). From the
solution of Eq. 1, one can deduce an optimal transport map T : x 7→ x− 1

2∇ψ
c(x)

that minimizes a ”transport cost” while satisfying mass conservation [14]:{
infT

[∫
Ω
‖T (x)− x‖2dx

]
s. t.∫

T−1(B)
dx =

∫
B
ν(x)dx ∀ measurable set B ⊂ Ω.

(2)

With the viewpoint of optimal transport, ψ can be considered as the Lagrange
multiplier of the volume conservation constraint (second line). The optimal
transport map T = Id − 1

2∇ψ
c is deduced from the gradient of the Legendre

transform of the solution ψ of the Monge-Ampère equation (1). The left-hand
side of the Monge-Ampère equation corresponds to the Jacobian of T . Hence,
the Monge-Ampère equation is a mean of controlling the Jacobian of an applica-
tion. The Kantorovich dual of (a relaxed version of) the optimization problem
in Eq. 2 writes:{

supψ
[
K(ψ) =

∫
Ω
ψc(x)dx +

∫
Ω
ψ(x)ν(x)dx

]
s. t. ψcc = ψ

(3)

3We will consider later in this article the case where Ω is an arbitrary simplicial set.
4In its general form, the Monge-Ampère equation also has a density µ on the left-hand

side, but in the context of this article, we consider a uniform density µ = 1.
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Figure 1: Left: Example of Laguerre diagram. Center and Right: unlike Voronoi
cells, Laguerre cells do not necessarily contain the points they are associated
with, depending on both the distribution of the points (center) and the values
of the ψi’s (right).

The Kantorovich dual is smooth and convex. These properties are interesting
because they can be used to establish the existence and uniqueness of the optimal
transport map and the associated Lagrange multiplier ψ. They can be also
exploited to design a numerical solution mechanism. In the next subsection, I
present the so-called semi-discrete setting, where the target density ν is replaced
with a discrete probability measure, supported by a pointset (xi)

N
i=1.

Semi-discrete Optimal Transport

The equivalence between the Kantorovich dual problem (Eq. 3) and the optimal
transport problem (Eq. 2), established in Brenier’s polar factorization theorem
[14] characterizes mathematical objects (probability measures) that can be less
regular than the densities involved in the Monge-Ampère equation (Eq. 1). For
instance, the density ν can be replaced with a weighted sum of Dirac masses
ν =

∑N
i=1 νiδxi . A subset B of Ω is measured as follows by a so-defined ν:∫

B

ν(x)dx =
∑

j|xj∈B

νj .

In this setting, the potential function ψ is parameterized by a vector (ψi)
N
i=1.

The funtional K of the dual problem (Eq. 3) becomes a function K : RN → R
that depends on the vector (ψi)

N
i=1:


K(ψ) =

∫
Ω
ψc(x)dx +

∫
Ω
ψ(x)ν(x)dx

=
∫

Ω
ψc(x)dx +

∑
i ψiνi

=
∫

Ω
infi

[
‖x− xi‖2 − ψi

]
dx +

∑
i ψiνi.

(4)
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Figure 2: Laguerre diagrams considered from an alternative viewpoint. Left:
the Laguerre diagram is the minimization diagram of the familly of functions
fi(x) = ‖x,xi‖2−ψi. Right: looking at these graphs from above, one sees a set
of convex polygonal cells.

The second line is obtained by taking into account the discrete definition of ν,
and the third one by replacing ψc by its definition (in Equation 1). The integral
in the first term of K(.) can be rearranged:

K(ψ) =
∑
i

∫
Lagiψ

(‖x− xi‖2 − ψi)dx +
∑
i

ψiνi (5)

where the partition of Ω into the sets Lagψi , called a Laguerre diagram, is defined
as follows:

Definition 1. Given the unit square Ω (resp. unit cube), a set X = (x1, . . .xN )
of points in Ω, a vector ψ = (ψ1, . . . ψn) ∈ RN , the Laguerre diagram is the

partition of Ω into the N regions Lagψi defined by:

Lagψi =
{
x ∈ Ω | ‖x− xi‖2 − ψi ≤ ‖x− xj‖2 − ψj ∀j 6= i

}
Each region Lagψi is referred to as a Laguerre cell. Laguerre diagram can

be considered as a generalization of Voronoi diagram (they are equivalent in
the specific case where all the ψi’s have the same value). Laguerre diagrams
have been extensively studied and characterized in computational geometry [15]
(in this context, if the cost corresponds to the squared distance, like in our
case, Laguerre diagrams are called power diagrams). Two examples of Laguerre
diagrams are shown in Figure 1. It is worth mentioning that depending on the
ψi’s, a Laguerre cell does not necessarily contain the point it is associated with
(unlike Voronoi cells). For instance, it is easy to check that one can translate the
entire diagram by an arbitrary vector u, without changing the xi’s, by setting
ψi =

√
maxj(u · xj)− u · xi, hence the cells can be artitrarily far away from

the xi’s.
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The Laguerre diagram can also be considered as the minimization diagram
of the familly of functions fi(x) = ‖x−xi‖2−ψi. The graphs of these functions
(paraboloids) for a 2D diagram is pictured in Figure 2-Left. The coefficient ψi
’shifts’ the associated paraboloid along the Z axis. Seen from above (Figure
2-Right), the function graphs appear as convex polygonal cells. The common
boundary between two cells corresponds to the projection of a parabola included
in a plane orthogonal to the picture, hence a straight segment.

Still considering Figure 2-Left, each coefficient ψi corresponds to the amount
of translation of the associated paraboloid along the Z axis. As one can imagine,
lowering a paraboloid (that is, increasing ψi, because of the ”-” sign) increases
the size of the associated Laguerre cell. Conversely, raising it decreases the size
of the cell5. One can also see that the Laguerre diagram does not change when
adding a constant to all ψi’s (the entire diagram is shifted along the Z axis and
the image does not change when viewed from above).

Now the question is: given a vector of prescribed volumes νi ≥ 0, such that∑
i νi = |Ω| = 1, is it possible to find the values of ψi such that |Lagψi | = νi

for all i ? In other words, is it possible to tune the heights of the paraboloids
in such a way that the areas of the cells seen from above match the prescribed
areas ? The (positive) answer is given by the following theorem [16] (it is also
a direct consequence of Brenier’s more general polar factorization theorem [14]
considered in the specific semi-discrete setting). We summarize below the main
argument of the proof in [16]:

Theorem 1. Given a set of n points X = (x1,x2,xn) in Ω, a set of positive
prescribed volumes (ν1, ν2, . . . νn) such that

∑
i νi = 1, there exists a unique (up

to a translation) set of scalars (ψ1, ψ2, . . . ψn) such that each Laguerre cell Lagψi
has the prescribed volume Vi.

proof (summarized, see [16, 9] for a complete proof) Consider the Kantorovich
dual function K(ψ) : RN → R defined by:

K(ψ) =
∑
i

∫
Lagψi

(‖x− xi‖2 − ψi)dx +
∑
i

ψiνi

=
∫
Ω

inf
i

[
‖x− xi‖2 − ψi

]
dx +

∑
i

ψiνi
.

The function K has the following properties:

1. The function K is concave;

2. the function K is differentiable up to the second order;

3. the components of the gradients of K are given by:
∂K/∂ψi = νi − |Lagψi |.

5A cell can even completely disappear if the corresponding paraboloid is shifted above all
the other graphs.
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Figure 3: Convexity of K: the graph of K is the lower envelope of a family of
affine functions G(ψ, I), parameterized by the Lagrange multipliers ψ and an
index map I, that maps each point of Ω to an index in [1 . . . N ] (symbolized by
colors on the left).

We explain below how to obtain the concavity of K (the two other properties
can be obtained by direct calculation. The second-order differentiability of K
with respect to ψ is studied in [17, 18], and its differentiability with respect to
x in [19], as well as the expression of the second-order derivatives.

To show the concavity of K, we introduce the following functional G, pa-
rameterized by ψ and by an index map I : Ω→ [1, . . . N ] that associates one of
the points xI(x) to each point x ∈ Ω.

G(ψ, I) =

∫
R3

(‖x− xI(x)‖2 − ψI(x))dx.

Clearly, it is easy to verify that for a fixed index map I, G affinely depends on
ψ. Among all the possible index maps I, let us consider now Iψ that maps each
point x to the index of the Laguerre cell it belongs to:

Iψ(x) = i ∀x ∈ Lagψi
We also have (from the definition of Lagψi ):

Iψ(x) = arg mini[‖x− xi‖2 − ψi]

7



which implies that for a given ψ0, among all possible index maps I, Iψ0 mini-
mizes G(ψ0, I). Thus, the graph of G(ψ, Iψ) is the lower envelope of a family of
affine functions, hence ψ 7→ G(ψ, Iψ) is a concave function (see Figure 3). Since
G(ψ, Iψ) corresponds to the first term of K, and since the second term of K is
linear in ψ, K is also concave. K has a unique maximizer ψ∗, where its gradient
vanishes, and the expression of the derivatives indicates that the volumes of the
Laguerre cells match the prescribed volumes. �

It is easy to verify that the optimal transport map Tψ∗ = Id− 1
2∇ψ

c maps
a point x of Ω to the point xIψ∗ (x):

Tψ∗(x) = x− 1
2∇
(
infi[‖x− xi‖2 − ψi]

)
= x− 1

2∇
(
‖x− xi‖2 − ψi

)
where i = Iψ

∗
(x)

= x− 1
2 (2x− 2xi)

= xi

In other words, for all x ∈ Lagψ
∗

i , T (x) = xi. Thus, the Laguerre cell Lagψi
corresponds of the set of points x of Ω mapped to xi through the optimal
transport map. The theorem implies that the following three statements are
equivalent:

1. The application Tψ∗ is the solution to the optimal transport problem (Eq
2);

2. the ψ∗i ’s are such that |Lagψ
∗

i | = νi for all 1 ≤ i ≤ n;

3. the vector (ψ∗)Ni=1 is the unique (up to a translation) maximizer of the
Kantorovich dual K.

In our context, our initial motivation (controlling the volumes of a La-
grangian mesh) is satisfied by the second statement. The optimal transport map
Tψ∗ in the first one can be considered as a ”by product” that we are not going to
use directly. In the (2D) context depicted in Figure 1, the theorem means that
by shifting correctly the paraboloids along the Z axis, one can make the areas of
the Voronoi cells match prescribed areas. In addition, the third statement and
the second-order differentiability of K [17, 19] can be exploited to design a New-
ton algorithm [18]. It means that from any set of points (xi)

N
i=1, it is possible

to compute a partition of Ω into a set of cells Vi = Lagψi of prescribed volumes,
that is |Vi| = νi for a set of positive νi’s such that

∑
i νi = |Ωi|. About the con-

vexity constraint ψcc = ψ in Eq. 3, in the semi-discrete setting, it is equivalent
to the absence of empty Laguerre cells in the diagram (Lagψi 6= ∅ ∀1 ≤ i ≤ N),
as can be shown by direct computation (see [9] for details).

Before detailing the numerical solution mechanism that computes the ψi’s,
I shall explain how the geometric setting can be extended to objects with free
boundaries.
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3 Free boundaries through partial optimal trans-
port

Let us now consider a different setting, where the simulated object does not fill
the volume Ω entirely. That is, the sum of the prescribed volumes νi is smaller
than the volume of Ω. This problem is referred to as a partial optimal transport
problem. I show how partial optimal transport can be considered as a particular
instance of optimal transport. To do so, we still consider the optimal transport
problem (Eq. 2) and its Kantorivich dual (Eq. 3), with the difference that this
time transport is done towards a set of ”objects” (pointsets) Oi:

infI
[∫

Ω
d2(x,OI(x))dx

]
subject to |I−1(Oi)| = νi ∀i

(6)

where:

� the index map I : Ω→ [1..N ] assigns an object Oi to each point x of Ω;

� each Oi is a set of points of Ω (that can contain either a single point, or
an integer number of points, or be a continuous subset of Ω);

� each Oi is supposed to receive a prescribed quantity of matter νi (con-
straint);

� the distance between a point x and an object O is defined by d(x,O) =
infy∈O [‖x− y‖];

� I−1(Oi) = {x | I(x) = i};

� Given an index map I, the corresponding map TI : Ω → Ω is defined by
TI(x) = arg infy∈OI(x)

‖x− y‖2.

Consider now the dual problem:

supψ

[
K(ψ) =

∫
Ω

inf
i

[
d2(x,Oi)− ψi

]
dx +

∑
i

ψiνi

]
subject to ψcc = ψ

.

It keeps the structure of our initial Kantorovich dual (Eq. 3,4), and the
argument for the convexity, smoothness, existence and uniqueness of the solution
still hold, but now we have a more general setting that we can use to account
for free boundaries: we consider now a set of N + 1 objects ONi=0:

� The first object O0 is a set of M points {y1, . . .yM} uniformly distributed
in Ω;

� each Oi for 1 ≤ i ≤ N is the singleton {xi};

� the object O0 is associated with ν0 = |Ω|−
∑N
i=1 νi, that is all the volume

of Ω not affected to the points {xi}.
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Figure 4: Left: approximation of partial optimal transport using a discretization
of the background (”ghost cells”). Right: exact solution to partial optimal

transport, where the background is considered as a continuum. Each cell V ψi is
the intersection between the laguerre cell LagΨ

i and the ball centered on xi of
radius

√
ψi.

This configuration is depicted in Figure 4-Left: the cells of the fluid are
displayed in blue. Each of them is a convex polygon. The background points
yMi=1 fill the entire domain Ω, including the part occupied by the fluid. All the
yi points share the same Lagrange multiplier ψ0. This may be interpreted as
the fact that it takes no cost for background cells to exchange matter (air).

For a part occupied by the fluid, each cell Lagψi that correspond to the fluid
has a Lagrange multiplier ψi larger than ψ0, then the fluid cell ”shadows” the
background cells. On the boundary of the fluid, the presence of the background
cells limit the size of the fluid cells. The external boundary of the fluid is formed
by straight segment shared by a fluid cell and a background cell (closeup in
Figure 4-Left).

A similar technique was used in [20], where it is proposed to insert points yi
in the vicinity of the boundary of the fluid (in the cited article, the corresponding
cells are called ”ghost cells”). The main advantage it that it allows directly
reusing a discrete optimal transport implementation to solve transport problems
with free boundaries. However, the ”ghost cells” technique has two drawbacks:

� first, it is difficult to know in advance where to insert the ghost cells to
make sure the boundary of the fluid is accurately represented, that is,
there is no easy way of predetermining which ghost cells influence the
fluid;

� second, the ghost cells have a significant computational cost: computing
a Laguerre diagram costs O(N d

√
N) (where d ∈ {2, 3} is the dimension),

and the Newton algorithm converges in O(N log(N)) iterations (empirical
results in [4]). The ”ghost cells” techniques computes a diagram with
N +M vertices (instead of N), where M needs to be sufficiently large to
accurately capture the free boundary.
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Figure 5: Left: The minimization diagram of the familly of functions fi(x) =
‖x− xi‖2 − ψi augmented with the graph of the function f(x) = 0 (horizontal

plane). Right: seen from below, the obtained cells V ψi are the intersections

between the Laguerre cells Lagψi and the disks of radii
√
ψi centered on the xi’s

(or the empty set if ψi is negative).

To overcome these limitations, I propose an alternative technique: let us now
imagine that the number of background points tends to infinity. More simply
put, the background object O0 becomes the entire Ω domain (and it is still

associated with ν0 = |Ω|−
∑N
i=1 νi). Let us also remember that the vector ψNi=0

is independent on a translation, thus, w.l.o.g. we can choose ψ0 = 0. Let us
now consider a cell V ψi associated with a fluid particle:

V ψi = {x | d2(x,Oi)− ψi < d2(x,Oj)− ψj) ∀j 6= i }

= {x | ‖x− xi‖2 − ψi < ‖x− xj‖2 − ψj) ∀1 ≤ j 6= i ≤ N
and ‖x− xi‖2 − ψi < d2(x,O0)− ψ0 }

= {x | ‖x− xi‖2 − ψi < ‖x− xj‖2 − ψj) ∀1 ≤ j 6= i ≤ N
and ‖x− xi‖2 < ψi }.

The last line is obtained by remembering that ψ0 = 0, and by noticing
that d2(x,O0) = 0 for all x in Ω since O0 = Ω. In other words, V ψi is the

intersection between the Laguerre cell Lagψi and a disk of radius
√
ψi centered

on xi, as shown in Figure 4-Right6. From this observation, not only ”ghost
cells” are no longer needed, but also we can much more accurately compute the
boundary of the fluid, by computing the intersection between the Laguerre cells
and a set of disks. Put differently, what we compute is the limit case where
the number of ghost cells M tends to infinity. Not only the result will be more
precise, but the overall computational cost will be significantly reduced, since
the number of vertices in the Laguerre diagram is not increased.

6or the empty set if ψi is negative. Note that a negative ψi cannot happen in our context,

since it would contradict the convexity of ψ (ψcc = ψ ⇔ V ψi 6= ∅ ∀1 ≤ i ≤ N), guaranteed by
all the iterations of the KMT Newton algorithm [18] (more on this below).
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As shown in Figure 5, to gain more intuition about this setting, it is also
possible to take the ”minimization diagram” point of view: the distance to
O0 = Ω is equal to zero on Ω, and ψ0 = 0, thus the graph of the associated
function f0 is the horizontal plane Z = 0. The other functions fi are shifted
paraboloids just like before. Now, looking at the diagram from above, one
will see the tip of the paraboloids intersected by the horizontal planes (disks).
The paraboloids can also intersect each other, forming polygonal cells with
straight edges (that correspond to projected parabolas), just like in the previous
configuration.

4 Numerical Solution Mechanism

I shall now explain how to design a numerical solution mechanism. The associ-
ated algorithm takes the following inputs and produces the following outputs:

Input: − The domain Ω ( can be [0, 1]d or a simplicial mesh)
− a set of N points xi ∈ Ω
− prescribed volumes (νi)

N
i=1 such that

∑
i νi ≤ |Ω|

Output: −the (unique) vector ψ∗ ∈ RN that maximizes K(.)

−the cells (V ψ
∗

i )Ni=1 such that |V ψ
∗

i | = νi

The core of the algorithm solves the following optimization problem:

supψ

K(ψ) =
N∑
i=1

∫
V ψi

(‖x− xi‖2 − ψi)dx +
N∑
i=1

νiψi


where V ψi = Lagψi ∩ {x | ‖x− xi‖2 ≤ ψi}

subject to V ψi 6= ∅ ∀1 ≤ i ≤ N

(7)

The KMT algorithm due to Kitagawa, Merigot and Thibert [18] is a Newton
algorithm that produces a series of iterates ψ(k) that provably converges to the
solution of Eq. 7. Each iterate satisfies the convexity constraint ψcc = ψ (that

is, V ψi 6= ∅ ∀k, ∀1 ≤ i ≤ N , see also [9]). Adapting the KMT algorithm to our
specific context has numerical and geometrical aspects detailed below.
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4.1 Numerical aspects

The KMT algorithm follows the classical structure of a Newton algorithm:

(1) : ψ ← [0 . . . 0]
(2) : Loop
(3) : Compute the cells (Vi)

N
i=1

(4) : Compute the gradient ∇K(ψ)
(5) : If ‖∇K(ψ)‖∞ < εK then Exit loop
(6) : Compute the Hessian matrix ∇2K(ψ)
(7) : Solve for p ∈ Rn in ∇2K(ψ)p = −∇K(ψ)
(8) : Find the descent parameter α
(9) : ψ ← ψ + αp
(10) : End loop

The algorithm above needs to evaluate the gradient and Hessian matrix of
K(.) at each main loop iteration. The coefficients of the gradient and Hessian

matrix can be deduced from the cells (V ψi )Ni=1 that are computed at step (3).
The algorithm that computes the cells is detailed later in the next subsection
on the geometric aspects. The components ∂K/∂ψi of the gradient ∇K(.) are
given by the following expression [18, 9]:

∂K

∂ψi
= νi − |V ψi |. (8)

In other words, each component of the gradient corresponds to the prescribed
volume νi associated with a point xi minus the volume of the cell V ψi . For the
vector ψ∗ that maximizes K(.), all components of the gradient vanish, which

means that each cell V ψ
∗

i has exactly the prescribed volume νi.
This expression of the gradient leads also to a natural stopping criterion

(line 5), the largest component of the gradient corresponds to the maximum
volume error. We stop the algorithm as soon as it is smaller than a prescribed
εK (typically one percent of νi).

We now consider the Hessian matrix computed at step (6). Adapting the
formulas in [18, 9] to our context, the coefficients of the Hessian are given by:

∂2K

∂ψi∂ψj
=

1

2

|V ψij |
‖xj − xi‖

if i 6= j

∂2K

∂ψ2
i

= −

∑
j 6=i

∂2K

∂ψi∂ψj

− 1

2

|V ψi0 |√
ψi

(9)

where |V ψij | = |∂V ψi ∩ ∂V
ψ
j | denotes the area of the intersection between the

border of the cell V ψi and the border of the cell V ψj , that is, a polygonal facet in

the Laguerre diagram clipped by the two balls B(xi,
√
ψi) and B(xj ,

√
ψj). The
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term |V ψi0 | corresponds to the free surface area in ∂V ψi , that is the portion of the

border of V ψi included in the sphere S(xi,
√
ψi), that touches the unoccupied

portion of Ω.
Step (7) of the algorithm computes the Newton step vector p, by solving

a linear system. Except the boundary term in ∂2K/∂ψ2
i , this linear system

is identical as the one solved in [4]: it corresponds to a Poisson equation dis-
cretized with finite elements. The matrix is sparse, with a non-zero coefficient
at coefficient (i, j) if and only if the cells V ψi and V ψj touch each other. The

additional term (1/2)
(
|V ψi0 |/

√
ψi

)
in ∂2K/∂ψ2

i does not change the sparsity

pattern of the Hessian: since the Lagrange multiplier associated with ψ0 is fixed
and equal to 0, there is no partial derivative with respect to it except the diag-
onal term. The same linear solver as in [4] can be used (Jacobi-preconditioned
conjugate gradient [21] with sparse matrix stored in CRS format, with optional
GPU acceleration), as well as the same stopping criterion ‖Hp−g‖/‖g‖ ≤ 10−3.

Once the step vector p is computed, we need to find a good descent param-
eter α (step (8)). In the KMT algorithm [18], provably convergent, the descent
parameter α is determined as follows:

(1) : α← 1
(2) : Loop

(3) : If infi |V ψ+αp
i | > a0

(4) : and ‖∇K(ψ + αp)‖ ≤ (1− α/2)‖∇K(ψ)‖
(5) : then Exit loop
(6) : α← α/2

(7) : Compute the cells (V ψ+αp
i )Ni=1

(8) : End loop

where a0 = 1
2 min

(
infi |V ψ

(0)
i |, infi(νi)

)
.

The KMT algorithm iteratively halves the descent parameter α until two
criteria are met: the volume of the smallest cell needs to be larger than a
threshold a0 (line 3), and the norm of the gradient needs to decrease sufficiently
(line 4). The threshold a0 for the minimum cell volume corresponds to (half)
the minimum cell volume for ψ = 0 (also called Voronoi diagram) and minimum
prescribed area νi.

Equipped with the KMT algorithm above, we can now compute the descent
parameter α, by plugging the algorithm above into line (8) of the Newton algo-
rithm at the beginning of this section.

4.2 Geometrical aspects

To evaluate the components of the gradient and coefficients of the Hessian of
K(.), the KMT algorithm needs to construct the cells V ψi = Lagψi ∩B(xi,

√
ψi),
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Figure 6: The Bowyer-Watson algorithm computes the Laguerre diagram (cell
boundaries displayed in white and grey). It uses internally a dual representation
(triangulation in black). One also needs to compute the intersection with Ω (blue
square in this example).
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that is, the intersection between Laguerre cells and balls centered on the xi’s for
each ψ(k) iterate. To do so, we first compute the Laguerre diagram, using the
classical Bowyer-Watson algorithm [22, 23], see Figure 6. A readily-available
open-source implementation is available in our GEOGRAM library [24] (and
also in the CGAL library [25] for programmers who have a taste for C++
templates). The details of our highly optimized implementation in GEOGRAM
are given in [4].

Given the points xi and the vector ψ, the Bowyer-Watson algorithm com-
putes the Laguerre diagram. Internally, it uses the dual triangulation, formed
by the black triangles in Figure 6 (in 3D, they become tetrahedra). Each vertex
of the Laguerre diagram is deduced from one of the triangles (resp. tetrahedra),
and the Laguerre cells are obtained by traversing the triangles (tetrahedra) in-
cident to a given xi. Note that the Boywer-Watson algorithm computes the
Laguerre diagram in the entire Rd domain, with infinite Laguerre cells (grey
straight lines in the Figure). To obtain the Vi cells, one needs to compute
intersections with the domain Ω (and also with the balls centered on the xi’s):

V ψi = Lagψi ∩ Ω ∩B(xi,
√
ψi)

In 2D, constructing the cells V ψi means computing intersections between
convex polygons and disks, which does not represent too much difficulty (see
Figure 4). However, it becomes a challenging task in 3D: as can be seen, we
need to compute a large number of intersections, and 3D mesh intersection is
known to be a delicate operation, subject to numerical precision problems: the
intersection algorithm depend on a small set of functions, called geometric pred-
icates, that take as input some points, and that returns a discrete value. For
instance, such a geometric predicate can tell whether a point p1 is above or
below another point p2. These geometric predicates are often polynomials in
the coordinates of the points. The limited precision of floating point numbers
can have catastrophic consequences, for instance when the algorithm estimates
that a certain point p1 is above another point p2, and later inconsistently es-
timates that p2 is above p1. Such inconsistent behavior can result in invalid
combinatorics (see e.g. [26]).

It is important to stress that we are going to compute a huge number of
intersections (billions), hence these numerical issues that correspond to what
may me initially thought of as very unlikely corner cases occur in fact thousands
times in a typical simulation. The goal now is to find a strategy to overcome
this robustness issue while keeping reasonable performance. The strategy is to
express the problem in terms of a small number of ”atomic” operations, that can
be used as solid foundations to build the rest of the algorithm. These ”atomic”
operations are simple and can be robustly implemented:

� (1) the algorithm will solely manipulate convex polytopes and their in-
tersections. A convex polytope C is defined as the intersection of Nv
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half-spaces Π+
i :

C =

Nv⋂
i=1

Π+
i =

Nv⋂
i=1

{x | aix+ biy + ciz + di ≤ 0}

� (2) to avoid inconsistencies, all the used predicates will be computed in
arbitrary precision [26], with arithmetic filters to speed-up computations
in the easy cases [27].

A consequence of (1) is that the balls B(xi,
√
ψi) will be approximated by

convex polytopes:

B(x, R) ' B̂(x, R) =

Nu⋂
i=1

{y | ‖x− y‖2 ≤ ‖x + 2ui − y‖2}

where (ui)
Nu
i=1 is a predetermined set of unit vectors u that uniformly sample

the unit sphere. While this strategy shares with the ”ghost cells” approach the
fact that it approximates the balls as convex polytopes, it differs from it in two
important aspects:

� first, computations are local to a given V ψi cell, with a small number of
vertices (typically 50 to 200, as compared to the total number of points N),
whereas the ”ghost cells” strategy needs inserting all additional vertices
into the global Laguerre diagram, with N +M vertices;

� second, each B̂(x, R) can be instanced from a precomputed unit sphere
template B̂ (0, 1) without needing to compute any intersection, by scaling
and translating the unit sphere template (no combinatorics needs to be
computed).

This means a large number Nu (typically 100 to 200) of unit directions ui
can be used without significantly increasing the computation time: the ”partial
optimal transport” algorithm computes a solution that is equivalent to using
Nu × N ”ghost cells”, without the associated computational cost. Not only it
significantly reduces the complexity, but also it makes it possible to use a large
value for Nu, that gives a precise approximation of the balls B(xi,

√
ψi). Alter-

natively, one can also use a data structure for convex polytopes with spherical
faces [28], but this comes with longer execution times, and robustness is more
difficult to ensure.

The domain Ω can be either a convex polytope, or a simplicial mesh Ω =⋃NT
i=1 Ti. In both cases the intersections between Ω, Lagψi and B̂(xi,

√
ψi) in-

volved in the definition of V ψi can be computed as intersections between convex
polytopes.
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Figure 7: Representation of convex polytopes.

4.2.1 Convex polytopes: H and V representation

The ”atomic” operation computes the intersection between a convex polytope
C and a half-space Π+:

C ← C ∩Π+.

In the end, to estimate the gradient and Hessian of K(.), we will need to
compute the volume of the cells and the areas of the cell borders. To do so, we
need to convert from the initial representation of the cell, that is, as an intersec-
tion of half-spaces” (H-representation), (Π+

i )Nvi=1 into an explicit representation
of all the vertices and facets of the cell (V-representation). As shown in Figure
7, if the planes are in generic position7, each vertex (black) is shared by three
planes Πi,Πj ,Πk. It is then natural to represent the polytope in dual form (see

Figure 7), by a triangulation (Tl = {il, jl, kl})Ntl=1 shown in red in the Figure
(the same representation is exploited by the Boywer-Watson algorithm that we
use to compute the Laguerre diagram). The coordinates qx, qy, qz of the vertex
ql associated with triangle Tl are the solution of: ai bi ci

aj bj cj
ak bk ck

 qx
qy
qz

 = −

 di
dj
dk


Using Cramer’s formula, the coordinates qx, qy, qz are given by:

 qx
qy
qz

 = − 1∣∣∣ ai bi ci
aj bj cj
ak bk ck

∣∣∣



∣∣∣∣∣∣
di bi ci
dj bj cj
dk bk ck

∣∣∣∣∣∣
∣∣∣∣∣∣
ai di ci
aj dj cj
ak dk ck

∣∣∣∣∣∣
∣∣∣∣∣∣
ai bi di
aj bj dj
ak bk dk

∣∣∣∣∣∣


(10)

7we will discuss degenerate cases further on.
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Figure 8: Clipping a convex polytope by a half-space.

(the i-th component of the solution corresponds to the determinant of the system
with its i-th column replaced with the r.h.s divided by the determinant of the
system, see [15, 29] for similar computations).

The algorithm to compute the intersection between a cell C and a half-space
Π+(a, b, c, d) works in three phases (see Figure 8):

Input: − A convex polytope C and a half-space Π+

Result: − replaces C with C ∩Π+

(1) : classify the vertices
(2) : discard the triangles
(3) : triangulate the hole

The first phase determines the triangles that correspond to vertices ql that
are on the negative side of Π+ (shown in black in Figure 8-Left), that is, aqx +
bqy + cqz + d < 0. This can be rewritten as:∣∣∣ ai bi ci

aj bj cj
ak bk ck

∣∣∣× ∣∣∣∣ ai bi ci di
aj bj cj dj
ak bk ck dk
a b c d

∣∣∣∣ ≤ 0

by replacing the coordinates of q by their expression (one obtains an expres-
sion of the determinant above, developed w.r.t. to its last row). Note that
the vertices of the triangles can be consistently oriented in such a way that the
sign of the first term (the 3 × 3 determinant) is always positive. In the end,
to classify a vertex, one only needs to compute the sign of the 4 × 4 determi-
nant |Πi,Πj ,Πk,Π| formed by the coefficients of the planes. This is the only
predicate8 used by the algorithm. Note also that during the computation of
the intersections, only the equations of the Πi planes are used, the q points do

8besides orient3d and in weighted sphere used by the Bowyer-Watson algorithm that
constructs the Laguerre diagram.
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not need to be explicitly computed. To compute the exact sign of these deter-
minants, I use expansion arithmetics [26], and arithmetic filters [27] to quickly
determine the sign in the easy cases. The implementation in [30] generates the
code that computes the predicate from its formula. This strategy ensures that
all combinatoric decisions taken by the algorithm will remain consistent. The
points q are computed once all clipping operations are computed, right before
evaluating the volumes and areas involved in the gradient and Hessian of K(.).

The second phase discards the triangles (i, j, k) such that |Πi,Πj ,Πk,Π|
< 0 (shown in grey in Figure 8-Center). This leaves a hole in the triangulation
(the border of the hole is shown in blue). As often done in implementations of
the Bowyer-Watson algorithm, the discarded triangles are kept in a linked list,
so that they can be reused in the subsequent steps;

The third phase constructs a new triangle for each edge on the border of
the hole created at the previous phase (see Figure 8-Right).

The algorithm has the same structure as the Bowyer-Watson algorithm, with
the difference that the in sphere predicate, that determines which triangle to
discard, is replaced with sign|Πi,Πj ,Πk,Π|. Another difference is the way the
Bowyer-Watson determines the list of triangles to be discarded. In our case we
test all the triangles. We could instead adapt the Bowyer-Watson strategy, that
starts from a random vertex, and walks along the edges of the dual graph until it
finds a triangle to be discarded, but since the number of triangles per polytope
remains small in our case (typically < 100), we did not observe a speedup using
this technique.

4.2.2 Computing the cells V ψi

I shall now explain how to use the algorithm of the previous paragraph to
compute the cells. Each cell V ψi = Lagψi ∩ Ω ∩ B̂(xi,

√
ψi) is the intersection

between three objects: the Laguerre cell Lagψi , the domain Ω, represented by
a simplicial mesh, that is, a set of tetrahedra, and the (approximated) ball
B̂(xi,

√
ψi). Note that the domain Ω is not necessarily convex, but since it

is decomposed into simplices, we only need to compute intersections between
convex objects. The algorithm that computes a cell V ψi is detailed below:

Input: − a simplicial mesh Ω
− the set of points (xi)

N
i=1 and the vector (ψi)

N
i=1

− the index i of a cell

Output: − A set of convex polytopes C = {Ck} such that V ψi =
⋃
Ck
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(1) : T ← {t ⊂ Ω | B(xi,
√
ψi) ∩ t 6= ∅}

(2) : If ∃t ∈ T | ∂t ∩ ∂Ω 6= ∅
(3) : For each t ∈ T
(4) : C ← t

(5) : C ← C ∩ Lagψi
(6) : C ← B̂(xi,

√
ψi) ∩ C

(7) : C← C ∪ {C}
(8) : End for
(9) : Else

(10) : C ← Lagψi
(11) : C ← B̂(xi,

√
ψi) ∩ C

(12) : C← C ∪ {C}
(13) : End if

In line (1), we first determine the set of simplices T that have a non-empty
intersection with the ball B(xi,

√
ψi). It is done using an axis-aligned bounding

box tree (AABB tree), see e.g [31].
Then we distinguish two different cases: first case: if one of the intersected

tetrahedra touches the boundary ∂Ω of the domain, then V ψi is not necessarily
convex, but can be easily decomposed into convex objects: to do so, we compute
the intersections Lagψi ∩ B̂(xi,

√
ψi)∩ t for each t in T . Second case: the ball

B(xi,
√
ψi) is included in Ω (no tetrahedron in T touches ∂Ω), then V ψi =

Lagψi ∩B(xi,
√
ψi) is convex and can be directly computed (lines (9) to (13)).

In lines (6) and (11), we compute the intersection between a convex polytope
and the approximated ball B̂(xi,

√
ψi). If C’s bounding sphere centered on xi

has a radius smaller than
√
ψi (that is, maxq∈C{‖xi−q‖ <

√
ψi), then C is en-

tirely contained in the ball and one can skip the intersection computation. Else,
the approximated ball B̂(xi,

√
ψi) is instanced (copied from the unit ball, trans-

lated and scaled), and then clipped by all the Πi’s from the H-representation of
C (in this order, because B̂(xi,

√
ψi) has a larger number of facets than C in

general).
In line (4), the convex polytope C is initialized from a tetrahedron of Ω.

Combinatorics are initialized from a fixed tetrahedron template, and the plane
equation of each facet p1,p2,p3 is given by ax+by+cz+d = 0, where (a, b, c) =
(p2 − p1)× (p3 − p1) and d = −(a, b, c) · p1.

In line (10), C is initialized from a Laguerre cell. Combinatorics are copied
from the Laguerre diagram, also stored in dual representation (tetrahedra).
The triangles of C correspond to the facets of the tetrahedra incident to ver-
tex i opposite to i. The plane equations Πi,j are given by: x ∈ Πij ⇔
‖x−xi‖2−ψi = ‖x−xj‖2−ψj or: ax+by+cz+d = 0 where (a, b, c) = 2(xi−xj)
and d = x2

j − x2
i − ψj + ψi.

Up to know we have supposed that all planes where in generic position (that
is, each vertex of the polytope is shared by exactly three planes). To handle the
specific configurations where more than three planes meet at a single vertex,
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one would think of using the symbolic perturbations, as in the ”simulation of
simplicity” technique [29]. In our case, the symbolic perturbation is trivial: one
can use the predicate |Πi,Πj ,Πk,Π| ≤ 0 as is (provided that it is implemented
with exact arithmetics, see [30] and references herein). It means that each time
a vertex q is exactly located on the boundary of a clipping half-space Π+ the as-
sociated triangle will be discarded. To evaluate the efficiency of this technique,
degenerate configurations are tested in the next section.

It is not necessary to store the set of convex polytopes C: one can process
them in a ”streaming” manner, when assembling the gradient and Hessian of
K(.). Then, the algorithm stores a single C at any time, and has only a small
memory overhead besides the storage taken by the Laguerre diagram (stored as
a 3D triangulation). Moreover, the algorithm is very simple to parallelize (then
it stores one convex polytope per thread). When assembling the gradient and
Hessian, it just needs a synchronization primitive (spinlock) to ensure that two
threads do not modify the same entry at the same time.

5 Numerical experiments

I shall now test the different components of the algorithm, first the lowest-level
one (convex polytopes clipping), then the partial optimal transport, and finally
demonstrate the algorithm used to implement a basic free-surface fluid simulator
in 3D.

5.1 Testing convex polytope clipping

The robustness of the convex polytope clipping algorithm is tested using some
highly degenerate configurations that are created on purpose. In Figure 9-
Left, the algorithm computes the intersection between 10000 (top) and 30000
(bottom) half-spaces tangent to a sphere with random normal vector. The same
sequence of half-spaces is fed to the algorithm 5 times, which creates degenerate
configurations with half-spaces that exactly correspond to existing facets. On
the right, a cube is clipped by 30 (top) and 500 (bottom) random half-spaces
tangent to a cone. This creates a highly degenerate vertex, common to all
facets. Again, the sequence of half-spaces is fed to the algorithm 5 times. In
both configurations, the implemented exact predicates robustly handles all the
degeneracies. Execution time is smaller than 1 second for both tests.

5.2 Testing partial optimal transport

We now test partial optimal transport. In the first test, shown in Figure 10,
we compute partial optimal transport between a cube and a set of 100 points
randomly distributed in the lower half of a cube. The cells are constrained to
occupy 10%, 50% and 90% of the cube respectively. The balls are approximated
by Nu = 162 half-spaces.
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Figure 9: Testing the robustness of the convex polytope clipping algorithm.

Figure 10: Testing partial optimal transport in a cube, with 100 random points
in the lower half of the cube. From left to right: fluid volume = 10%, 50% and
90%.
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Figure 11: Testing partial optimal transport in a tet mesh, with 100 random
points in the lower half of the domain. Left: fluid volume = 50%, Right: 75%.

fraction nb iter max err avg err time
10% 4 0.19% 0.006% 0.28s
50% 5 0.54% 0.1% 0.39s
90% 7 0.008% 0.001% 0.58s

The table above reports the number of Newton iteration (second column)
spent to reach convergence, that is, when the largest difference between re-
quested and actual cell volume among all cells (third column) is smaller than
εK = 1%. The average volume difference is also reported (fourth column), as
well as total execution time (fourth column). As can be seen, when the fraction
of the volume occupied by the cells is larger, the algorithm takes a larger num-
ber of iterations to converge. This is because the interactions between the cells
introduce mode dependencies in K(.).

We now test partial optimal transport in a domain Ω of arbitrary shape,
here a genus 3 torus represented by a tessellated mesh (see Figure 11. The
tetrahedral mesh has 56K elements. The points are distributed in the bottom
half of Ω. Statistics and timings are reported in the table below.

fraction nb iter max err avg err time
10% 3 0.0032% 0.0031% 1.9s
50% 4 0.9% 0.2% 4s
75% 5 0.45% 0.12% 4s
90% 6 0.02% 0.003% 5.88s

5.3 Testing the Lagrangian mesh representation: a toy
free-boundary fluid simulator

I shall now demonstrate how the algorithm can be used to implement a La-
grangian mesh with controlled volume that can change topology, with a very
simple incompressible Navier-Stokes simulator for fluids with free boundaries.
In the context of this article, this ”toy” simulator is meant to demonstrate that
our Lagrangian mesh can reproduce some of the typical behaviors of a fluid

24



while accurately tracking collisions and changes of topology. A more extensive
quantitative evaluation of the simulator and the calibration of its parameters
will be the subject of another article.

The simulator is obtained by adding viscosity and surface tension terms
to the Gallouet-Merigot scheme [32], that simulates an incompressible Euler
fluid. Inspired by Brenier and Benamou’s point of view on incompressible fluids
[14, 33], the Gallouet-Merigot scheme softly projects the motion onto the in-
compressibility constraint by adding a ”spring” force, that moves each point xi
towards the centroid of its cell Vi. This additional ”pressure” force makes the
motion of the fluid tangent to the manifold of incompressible motions, and the
computed fluid motion provably converges to the solution of an incompressible
Euler fluid, that is, a geodesic on the manifold of incompressible motions (see
[34, 35] on geodesic flows and the Euler-Arnold equation). The reader is referred
to [32] for all the details.

The fluid is modeled as a set of Vi cells, parameterized by the xi points. The
volume of each Vi cell is controlled and remains constant throughout the whole
simulation. All the cells have the same mass m. Each cell is subjected to the
following forces:

Fp(xi) = 1
ε2p

(xi − gi) where gi = 1
|Vi|
∫
Vi

xdx

Fg(xi) = −mgz

Fv(xi) = µ∆̂v(xi) = µ
∑
j∈Ni

1
2‖xj−xi‖ |Vij | (vj − vi)

Ft(xi) = γ∆̂x(xi) = γ
∑
j∈Ni

1
2‖xj−xi‖ |Vij | (xj − xi).

Following [32], the ”pressure” Fp may be thought of as a ”spring” that connects
each point xi to the centroid gi of the associated cell Vi with a stiffness εp. The
additional forces are viscosity and surface tension: viscosity Fv is proportional
to the Laplacian of the velocity. Surface tension Ft is derived in a volumetric
manner, from the mutual attraction in the fluid. Inside the fluid, the net result
is zero. On the boundary, the net result is a force that pulls towards the interior
of the fluid. Both viscosity and surface tension use the P1 Laplacian:

∆̂f(x) =
∑
j∈Ni

1

2‖xj − xi‖
|Vij | (f(xj)− f(xi))

where |Vij| = |∂Vi ∩ ∂Vj | denotes the area of the facet common to the cells Vi
and Vj , and where Ni denotes the set of cells touching Vi. In the expressions of
Fv and Ft, it is computed component-wise.

The simulation results shown below use a semi-implicit time-stepping, with
implicit integration for the viscosity, as follows:
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x(k+1) = x(k) + δtv(k)

v(k+1) = v(k) + δt
m

(
Fp + Fg + Ft + µ∆̂v(k+1)

)
or:

(
Id− µ δtm∆̂

)
v(k+1) = v(k) + δt

m (Fp + Fg + Ft)

or:
(

∆̂− m
µδt Id

)
v(k+1) = − 1

µ

(
m
δtv

(k) + Fp + Fg + Ft
)
.

The linear system is solved for each component x, y, z separately. Note that the
matrix of this linear system corresponds to ∆̂ plus a diagonal term. To assemble
it, the same code that constructs the Hessian of K() can be reused.
Sub-stepping is used whenever the CFL condition is violated, that is whenever
a displacement δt v is such that more than one cell is crossed, that is whenever
there exists an i such that δt |vi| >

√
ψi.

The method is tested in four different configurations (see videos in the web-
page https://members.loria.fr/blevy/papers/POT):

� a simulated crown splash, shown in Figure 12, computed with 500000 cells.
The simulated mesh captures all the changes of topology, and preserves
the fine details of the motion throughout the simulation;

� a fluid in a zigzag domain (Figure 13), demonstrating the interactions
between the fluid and the boundary of the domain;

� the same zigzag domain (Figure 14) with a higher surface tension;

� a simulation of the experimental results in [36] shown in Figure 15, where
a droplet slides along a slope and bounces over obstacles. An example of a
simulation mesh is shown in Figure 16, as well as a cross-section, revealing
the internal structure of the mesh, and the effect of surface tension that
clusters the points xi near the surface (due to the volume constraint, the
associated cells are more elongated than the others). Some frames of the
full animation are shown in Figure 17. The fluid-boundary interactions
and the typical oscillations of the droplet are reproduced in the simulation.

The table below indicates the parameters for the four simulations:

g m µ γ N comput. time
Splash 10 3 0.001 1.5 500000 98s
Zigzag 1 1 3 0.001 0.5 25000 12s
Zigzag 2 1 3 0.001 2 5000 2.8s
Hurdles 0.3 3 0.001 3 5000 3.5

The table reports the parameters for gravity (g), viscosity (µ), surface tension
(γ), the number of cells (N) and the computation time for one timestep. The
domain Ω is normalized in the [0, 1]3 box. For fine-scale tension-dominated sim-
ulations (zigzag and hurdles), the simulation space is globally scaled-down by
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applying a scaling factor to g. In the four simulations, the threshold for Newton
iterations εK is set to 1%. During the whole simulation, each cell volume |Vi|
remains within a 1% tolerance from the specified volume. Note that unlike some
methods that use an Eulerian mesh, volume errors do not accumulate, the 1%
bound is met by all cells at all timesteps. The parameter εp for the ”pressure”
is set to 0.004, and the timestep is set to 0.004. The spheres are approximated
using Nu = 162 half-spaces.

I shall now report timing breakdown, measured with the crown splash ex-
ample (Intel Core i9-9880H, 2.3 GHz, multithreaded implementation):

phase time
Laguerre (Bowyer-Watson) 9.7%
Linear solve 2.2%
Evaluate gradient 32.8%
Evaluate and assemble Hessian 41.5%
Euler update and implicit viscosity lin. solve 13.8%

The phases that take the largest amount of time are evaluating the gradient
and Hessian. It is because these phases involve all the geometric computations
(query the Axis-Aligned Bounding Box tree, compute intersections between con-
vex polytopes and compute volumes and areas).

Concerning the geometric predicate used by the convex polytope clipping
algorithm (the sign of a 4x4 determinant), during 100 timesteps of the crown
splash example, it was called 15752996161 times (15.7 billions), and the arith-
metic filter triggered the arbitrary precision mode 70034 times (that is, 0.0004
%). Clearly, degenerate configurations represent a tiny proportion, but given
the huge number of computed intersections, they appear in each simulation. Our
robust intersection algorithm properly handles them, with negligible overhead,
thanks to the arithmetic filters (see also [30] and references herein).

6 Conclusions and future works

The experimental results tend to confirm that semi-discrete partial optimal
transport can be used to implement a Lagrangian scheme for free-surface fluid
simulation. The precise analysis, comparison to state of the art codes and
calibration of the parameters will be the topic of another article. Note also
that the convergence to the Merigot-Gallouet scheme to the solution of the
incompressible Euler equation is guaranteed [32], but it is no longer the case for
Navier-Stokes, with the added viscosity and surface tension terms.

I used here a simple semi-implicit time stepping, it would be interesting to
implement a simplectic scheme: in the end this will result in a simulator with
both precise conservation of volume and precise conservation of the Hamiltonian.
However, this will require a careful analysis for sub-stepping.
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Figure 12: Testing surface tension and topology changes: crown splash
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Figure 13: Free-surface flow and interactions with boundaries: moderate surface
tension.
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Figure 14: Free-surface flow and interactions with boundaries: higher surface
tension.
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Figure 15: Droplet hurdles race, courtesy Hélène de Maleprade, Rachid
Bendimerad, Christophe Clanet and David Quéré.

Figure 16: Simulated droplet hurdles race: Mesh details and cross-section.
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Figure 17: Simulated droplet hurdles race
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Adaptivity is another aspects that would be interesting to study, that is,
creating and deleting cells dynamically, during the simulation, using larger cells
in zones where the flow is simple, and smaller cells near the boundary of the
fluid, to better capture the fluid shape and to more accurately represent surface
tension. To even better adapt the geometry of the flow, anisotropic cells could be
used, defined by a tensor attached to each point, and cells that are intersections
between Laguerre cells and ellipsoids.

Performance can be improved, using a GPU implementation of the clipped
Laguerre diagram [37, 38, 39]. This will require to find a way of making the
representation more compact (convex polytopes with 200 faces do not fit well in
GPU caches). Direct representation of curved polytopes [28] may be an option.

Finally, it is important to stress the fact that the so-defined free surface
Lagrangian mesh smoothly depends on the parameters xi. Namely, the function
K is differentiable up to the second order in both ψ and x, and the second-
order derivatives have simple expressions (see [19]). As a consequence, this
representation can be used to optimize an objective function that depends on a
shape of prescribed volume, where the shape is parameterized by the xi’s. Then,
the objective function will smoothly depend on the xi’s, making it possible to
optimize it with efficient numerical methods (Newton, LBFGS, . . . ).

In future works, I plan to explore different applications, in astrophysics (ex-
tensions of [4]), and also in shape and topology optimization that may benefit
from the differentiability of the representation. It is also interesting to no-
tice that the current trend of numerical methods called ”artificial intelligence”
mostly rely on representations that are differentiable with respect to the param-
eters. I think the representation described here can be used to represent latent
spaces of shapes, and efficiently fit them to databases of 3D objects.

Acknowedgements
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