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Abstract

Recently, time and effort have been devoted to automatic texture
mapping. It is possible to study the parameterization function and to
describe the texture mapping process in terms of a functional opti-
mization problem. Several methods of this type have been proposed
to minimize deformations. However, these existing methods suffer
from several limitations. For instance, it is difficult to put details of
the texture in correspondence with features of the model, since most
of the existing methods can only constrain iso-parametric curves.

We introduce in this paper a new optimization-based method
for parameterizing polygonal meshes with minimum deformations,
while enabling the user to interactively define and edit a set of con-
straints. Each user-defined constraint consists of a relation linking a
3D point picked on the surface and a 2D point of the texture. More-
over, the non-deformation criterion introduced here can act as an
extrapolator, thus making it unnecessary to constrain the border of
the surface, in contrast with classic methods. To minimize the crite-
rion,a conjugate gradient algorithm is combined with a compressed
representation of sparse matrices, making it possible to achieve a
fast convergence.

CR Categories: I.3.3 [Computer Graphics] Picture/Image Gen-
eration ; I.3.5 [Computer Graphics]: Three-Dimentional Graphics
and Realism—Color, shading, shadowing and texture; I.4.3 [Image
processing]: Enhancement—Geometric Correction, Texture
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1 INTRODUCTION

Texture mapping is a technique commonly used in computer graph-
ics to generate realistic and visually rich images, by putting each
object in correspondence with a 2D image. The notion of pa-
rameterization provides a mathematical formalism for studying this
problem [16, 15]. A parameterization is a function putting the 3D
surface to be textured in one-to-one correspondence with a subset
of IR2, called theparameter space. When such a parameterization
is associated with a surface, it is possible to texture-map the sur-
face by painting its parameter space with an image. For instance,
Catmull has proposed to apply this technique to bi-cubic splines in
[4]. This latter approach does not provide any means of controlling
the nature and the repartition of the deformations. For instance, in
the case of a sphere provided with its natural parameterization, high
deformations are likely to occur near the poles.

1.1 Previous Work

Different approaches have been described to improve these
results, such as using simple geometric transforms [3, 22], un-
folding the surfaces [2, 9, 24] or global optimization approaches
[14, 17]. Maillot et. al. propose in [18] to minimize a norm
of the Green-Lagrange deformation tensor, but the repartition
of the deformations are still difficult to control when using
this method. Pedersen introduces in [23] a global optimization
method, but the times reported seem to indicate that a great
deal of user interaction is required, as well as in [14], where
the user needs to construct a large number of iso-parametric
curves. In [11], the notion ofconformal map, from differential
geometry, is used to generate an angle-preserving parameterization.

The theory of planar graphs provides a mathematical background
for studying the parameterization problem. For instance, an approx-
imation of harmonic maps [6] has been used by Ecket. al. in [5]
to parameterize triangulated surfaces previously decomposed into
topological disks (the same kind of approach based on subdivision
is described in [15]). Similarly, the notion of barycentric applica-
tion [25] has been used in [7] for the same purpose. The problem of
minimizing the deformations is addressed there by defining appro-
priate weights for the convex combinations involved in the barycen-
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Figure 1:An indirect and partial solution to the problem of feature matching consists
in surrounding the model with an intermediate parametric surface, painted with the
texture. The user can then interactively edit the intermediate surface, by moving its
control points. Texture coordinates on the model are retrieved by projecting them from
the intermediate surface.

tric map. The approach introduced in [16] combines the notion of
barycentric application with penalty functions to preserve right an-
gles and to ensure an homogeneous spacing of the iso-parametric
curves all over the surface. In [12, 13], a non-deformation criterion
is introduced, with extrapolating capabilities. In other words, using
this criterion, it is not necessary to constrain the border of the sur-
face. However, minimizing this latter criterion requires a non-linear
solver, which may result in expensive computations.

1.2 Matching features

The different approaches mentioned above make it possible to
map an image onto an object, with more or less user interaction
required. Using these approaches, it is possible to construct a
parameterization presenting satisfying non-deformation properties
in a reasonable time. However, the problem of matching features
between the model and the texture has not been addressed by these
methods. In the specific case where the texture and the model are
acquired from the same source (e.g. a 3D scanner), the problem of
feature matching becomes a calibration problem. More generally,
we consider here the case where the texture and the model come
from a different source. In this case, the texture needs to be
warped on the model according to user-specified information. For
instance, when considering a face, the user may want to specify a
correspondence between the eyes on the model and the eyes on the
texture. A solution for matching iso-parametric curves is proposed
in [16]. Unfortunately, this method cannot be applied in the general
case, since it is not always possible to constrain the features with
iso-parametric curves. For instance, it is impossible to map a
closed curve (such as the border of an eye) to an iso-parametric
curve.

As shown in Figure1, the problem of feature matching is ad-
dressed in the industry in anindirect way. Using this approach,
when a specific feature needs to be matched, it is very likely that the
user needs to edit several control points of the intermediate surface.
Therefore, a large number of trials and errors is required to realize a
texture mapping which precisely matches the features of the model.
A better approach to feature matching consists of parameterizing
the model without any constraint, and then warping the texture in
2d, as done in [10]. In the approach we present here, we consider
that 3d-2d feature matching is as simple as 2d-2d morphing, and
therefore can be performeddirectly , during the parameterization
process.

1.3 Overview

The approach presented in this paper enables adirect manipulation
of the mapping, and defines a regularization criterion ensuring a
smooth transition between the constraints specified by the user. As
shown further, such a constraint is a link between a 3d point of the
model and a pixel in texture space, and both can be interactively
modified.

Compared to other methods, our approach presents the following
advantages:

• an arbitrary set of constrained features can be honored in the
least squares sense, whereas other methods can only constrain
iso-parametric curves (e.g. [15, 16]) ;

• the non-deformation criterion we introduce can act as an ex-
trapolator, which means that it is not necessary to constrain
the border. Therefore, more degrees of freedom are available
to the system for minimizing the deformations. In contrast
with the method proposed in [12], the criterion can be mini-
mized by a linear solver ;

• the solver introduced here is based on the conjugate gradient
method and a sparse representation of matrices. It has a better
rate of convergence than methods based on successive over
relaxations, such as in [16]. It can incorporate the constraints
presented there, such as those enabling to take discontinuities
into account.

• using our approach, it is unnecessary to triangulate the poly-
gons of the model, since any open surface composed of con-
vex polygons can be used (non-convex polygons can be pre-
processed by the classicalear-cuttingalgorithm).

The paper is organized as follows. The next section introduces
the notion of parameterization for a polygonal mesh. In Section 3, it
is shown how to express the constrained parameterization problem
in terms of quadratic optimization. Section 4 details the numerical
solver and gives an analysis of its space and time complexities. A
few examples are shown at the end of the paper.

2 PARAMETERIZATION OF POLYGONAL
MESHES

We consider here the case of a surface homeomorphic to a disc.
More complex surfaces can be decomposed into a set of tiles, using
texture-atlas approaches, as done in [21],[15] and [5]. In this case,
our approach may be used to parameterize each tile of the atlas.

2.1 Definitions

As shown in Figure2, given an open surfaceS of IR3, a mappingU
is a one-to-one transform, putting the surfaceS in correspondence
with a subsetΩ of IR2.

(x, y, z) ∈ S → U(x, y, z) =

[
Uu(x, y, z)

Uv(x, y, z)

]
In the remainder of this paper, the following terms will be used:

• The setΩ is called the(u, v) parameter space;

• The inverse functionX = U−1 is called aparameterization
of the surface:

(u, v) ∈ Ω → X (u, v) = U−1(u, v) =

[
x(u, v)
y(u, v)
z(u, v)

]



Figure 2: A mappingU() puts a surfaceS of IR3 in one-to-one correspondence
with a subsetΩ of IR2 called the(u, v) parameter space. The inverseX () of U() is
named a parameterization ofS.

2.2 Piecewise Linear Parameterization

In the case considered here, the surfaceS is represented by a polyg-
onal meshG = {[1 . . . n], {P}}, where[1 . . . n] denotes the set of
vertices identified by integers, and{P} the set of polygons. Each
polygonP = {i1, i2, . . . iq} is determined by the list of its vertices
indices. The geometric location at the vertexi is denotedpi. For
a surface represented by this type of discretization, it is possible to
represent a parameterization by providing each vertexi with its im-
ageui = (ui, vi) through the mapping. Then, as shown in Figure
3, supposing that all the values(ui, vi) are known, the mapping can
be defined as a piecewise linear function, by virtually decomposing
each polygonP into a set of triangles incident to the centerc of
P. Given a pointM in the polygonP, the mappingU(M) atM is
given by :

U(M) = λ1.uc + λ2.uik + λ3.uik+1 (1)

where :

• c = 1/q.
∑

l
pil is the center ofP anduc = 1/q.

∑
l
uil ,

its image in parameter space, whereq denotes the number of
vertices ofP ;

• k andk + 1 are such that{c,pik ,pik+1} is the unique (vir-
tual) sub-triangle ofP that containsM ;

• (λ1, λ2, λ3) are the barycentric coordinates atM in
{c,pik ,pik+1}.

Conversely, the piecewise linear parameterizationX at a point
u = (uu,uv) in a triangle{uc,uik ,uik+1} of the parameter space
Ω is given by :

X (u) = λ1.c + λ2.pik + λ3.pik+1 (2)

where λ and µ are the barycentric coordinates atu in
{uik ,uik+1 ,uc}. It is easy to check that in a given triangle, the
so-definedX function corresponds to the inverse of the mappingU .

3 CONSTRAINED TEXTURE MAPPING

Given this representation of the mapping function, stored in a
polygonal mesh, our purpose is now to provide texture mapping
with the equivalent of data fitting approaches existing in the realm
of geometric design. In this field, surfaces are often represented by
(polynomial) functions. When a surface represented by a function
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Figure 3: For a polygonal mesh, a mappingU() can be defined to be a piecewise
linear function, defined by its valuesui = (ui, vi) at the vertices of the mesh.
Each polygon is virtually decomposed into triangles over which the mapping is linearly
interpolated.

X is supposed to pass through a set ofm data pointsMj associ-
ated with the parameter-space pointsUj , objective functions like
the followingC(X ) are often minimized :

C(X ) =
m∑
j=1

{Mj −X (Uj)}2 + ε
∫

Ω

(
∂2X
∂u2

)2

+
(
∂2X
∂v2

)2

du.dv

(3)
In this equation, the first term represents the squared deviation at

the data points, and the second term enforces the smoothness of the
solution. The user-defined parameterε ∈]0,∞[ makes it possible
to choose a compromise between the accuracy of the fitting and the
smoothness of the solution. In our case, it is easier to characterize
the mapping function rather than the parameterization. The next
section shows how to define a similar criterion for such a function,
defined over a polygonal mesh, to enable a direct manipulation of
the mapping (see Figure4). It will be also shown how to constrain
the gradients of the mapping. Then, how to minimize the so-defined
criterion will be explained.

3.1 Matching Features

Each feature point is defined to be a couple of points(Mj ,Uj),
whereMj ∈ IR3 is a point belonging to the surfaceS, andUj =
(Uj , Vj) the desired texture coordinates atMj . The data fitting
term of Equation3 becomes :

Cfit =

m∑
j=1

∆2

fit(Mj) =

m∑
j=1

‖Uj − U(Mj)‖2

Recalled from Equation1, the mappingU atM is a linear com-
bination of the valuesuil at the vertices of the polygonP =
{i1, . . . iq} that containsM. Then, by replacing the center of the
polygon in parameter spaceuc by its expression, the fitting term
∆2

fit(Mj) is defined by the coefficientsai :

∆2

fit(Mj) =

(
Uj −

n∑
i=1

ai.ui

)2

+

(
Vj −

n∑
i=1

ai.vi

)2

where :


aik = λ1/q + λ2

aik+1 = λ1/q + λ3

ai = λ1/q ∀i ∈ P − {ik, ik+1}
ai = 0 everywhere else

(4)



Figure 4:Outline of the method : Starting from a polygonal mesh (A) and an image (B), an initial parameterization is automatically computed (C). The user can iteratively refine
it, by creating constraints, and editing them either in model space (D), or in texture space (E). The object can be updated and displayed after each modification of the constraints
(update time: 2 s.) ; F : Final result (total session time : 5 min.)

In this equation, as in the previous section,ik andik+1 denote
the vertices defining the virtual sub-triangle ofP that containsMj

(see Figure3). This generalizes Mallet’sfuzzy control points[19].

3.2 Constraining the Gradient

Controlling the gradient of the parameterization provides an addi-
tional way to interact with the texture mapping process. As shown
in Figure5, this provides editing capabilities similar to “free-form
design”. In addition, the involved equations will be also used fur-
ther to define the regularization term.

A B C

Figure 5: Editing the gradients of a parameterization. A: Initial configuration; B:
Editing the direction of the gradients; C: Editing their magnitude.

Given a triangleT = {p1,p2,p3} in IR3, and given three val-
uesν1, ν2, ν3 associated with the vertices ofT , the gradient of the
linear interpolation ofν over T is constant, and will be denoted
grad(ν|T ). Its components are linear combinations of the values
(ν1, ν2, ν3). The gradient will be expressed in the local orthonor-
mal basis(p1,X,Y) :

X =
p2 − p1

‖p2 − p1‖
; Y =

X× (p3 − p1)×X

‖X× (p3 − p1)×X‖

In this basis, the gradient is given as follows (see [20]) :

grad(ν|T ) =

[
3∑
i=1

TXi.νi
3∑
i=1

TYi.νi

]t


TX1 = (Y2 − Y3)/d ; TY1 = (X2 −X3)/d

TX2 = (Y3 − Y1)/d ; TY2 = (X3 −X1)/d

TX3 = (Y1 − Y2)/d ; TY3 = (X1 −X2)/d

d = (X2 −X1).(Y3 − Y1)− (X3 −X1).(Y2 − Y1)

(5)

In this equation,(Xi, Yi) denote the coordinates atpi in the ba-
sis (p1,X,Y). Given a pointMj and a vectorUj specified by
the user to constrain the gradients ofu, andP = {i1, i2, . . . iq},
the polygon that containsMj , the squared deviation∆2

grad(Mj)

of the gradient is given by :

∆2

grad(Mj) = ‖Uj − gradu(Mj)‖2

=

(
Uj .X−

n∑
i=1

ai.ui

)2

+

(
Uj .Y −

n∑
i=1

a′i.ui

)2

where :

aik = TX1/q + TX2 ; a′ik
= TY1/q + TY2

aik+1 = TX1/q + TX3 ; a′ik+1
= TY1/q + TY3

∀i ∈ P − {ik, ik+1}, ai = TX1/q ; a′i = TY1/q

∀i /∈ P, ai = 0 ; a′i = 0

(6)
The same term can be defined to constrain the gradient ofv.

3.3 Regularization

In Equation3, expressing both the data fitting and regularization
criteria, the parameterizationX is characterized. In our case, since
the unknowns are the(ui, vi) texture coordinates, it is easier to
characterize the mapping functionU . Our goal is then to adapt
the regularization criterion to a piecewise linear mapping function
U . The regularization criterion, as defined in Equation3, involves
the second derivatives of the parameterization. Since the second
derivatives are not defined for a piecewise linear parameterization,
we need to define an equivalent criterion. The second order deriva-
tives may be thought of as the variation of the gradient.

As shown in Figure6, a possible regularization criterion can then
be defined as the sum of the gradient variations over all edgesE of
the mesh. Considering two adjacent polygonsP = {i1, . . . iq}
andP ′ = {i′1, . . . i′q′}, the variation of the gradient betweenT =

{p1,p2, c} andT ′ = {p1,p2, c
′} is given by :

Creg =
∑

i1,i2∈E
∆2

reg(i1, i2)

where :
∆2

reg(i1, i2) = {grad(u|T )− grad(u|T ′)}2

+ {grad(v|T )− grad(v|T ′)}2
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Figure 6:Minimizing the variations of the gradient between two adjacent polygons.

In this equation, the gradient can be computed using its expres-
sion, given by Equation5. As can be seen, the termTX3 is null,
which means that theX component of the gradient only depends
onν1 andν2, and is therefore the same for two triangles sharing the
edgep1,p2. For this reason, only theY component plays a role in
the regularization criterion. The variation of the gradient can then
be expressed as follows :

∆2
reg(i1, i2) =

{
n∑
i=1

ai.ui

}2

+

{
n∑
i=1

ai.vi

}2

where :

ai1 = TY1/q + TY ′1/q
′ + TY2 + TY ′2

ai2 = TY1/q + TY ′1/q
′ + TY3 + TY ′2

∀i ∈ P − {i1, i2}, ai = TY1/q

∀i ∈ P′ − {i1, i2}, ai = TY ′1/q
′

∀i/i /∈ P, i /∈ P′, ai = 0

(7)

Figure7-A shows an harmonic map. Such a parameterization re-
quires the border of the surface to be fixed, which can cause defor-
mations. Note that a better boarder curve can be chosen, to obtain
a less deformed result, but this requires in practice a great deal of
user interaction, especially when the border has a complex shape.
In contrast, our regularization criterion can act as an extrapolator.
As shown in Figure7-B, a parameterization can be extrapolated
from an arbitrary set of fixed points (in blue).

The next section shows how to minimize the global criterion,
combining the regularization and the fitting terms.

4 NUMERICAL OPTIMIZATION

As can be seen by summing the terms from Equations4, 6 and7,
defining respectively the point fitting, gradient fitting, and regular-
ization terms, the criterionC(U) is a sum of squared linear rela-
tions, and can be therefore written as follows :

C(U) =
m∑
j=1

∆2

fit(Mj) +
m′∑
j=1

∆2

grad(Mj) + ε
∑
e∈E

∆2
reg(e)

=
∑
k

(
bk −

2.n∑
i=1

ak,i.xi

)2

= ‖A.x− b‖2

In this equation, the vectorx ∈ IR2.n is the vector of all
unknowns (ui, vi), defined byxi = ui and xi+n = vi.

A B

Figure 7:A : When using harmonic maps, the border needs to be fixed, which can
cause high deformations ; B : Our criterion can extrapolate a parameterization from
any set of fixed points (shown as squares), and does not need the border to be fixed.

The kth squared linear relation of the criterionC yields a row
{ak,1, . . . ak,2.n} of the matrixA, and a componentbk of the vec-
tor b. Each row{ak,i}, bk is normalized, andε is set to10 in the
examples shown here. Solving the following problem is equivalent
to minimize the criterionC :∣∣∣∣∣ minimize 1

2
.xt.G.x + ct.x

whereG = At.A ; c = −At.b

It is possible to ensure the existence and uniqueness of the mini-
mum by adding aroughnessterm to this equation, as shown in [19].

4.1 Conjugate Gradient for Sparse Matrices

This minimization problem can be easily solved by the conjugate
gradient method (see e.g. [8]). The variant by Hestenes and Stiefel
of this method [1] is very efficient, and can be implemented as
follows. Starting from an initial solutionx, the following algorithm
iteratively minimizes the norm of the residual‖G.x + c‖ and stops
when it is smaller thanε‖c‖ :

solve(G,x, c, ε) :
Variables :

g, r,p ∈ IR2.n

t, τ, σ, ρ, γ, treshold∈ IR

treshold← ε2.‖b‖2 ; g ← − (G.x + c) ; r← g

while ‖g‖2 > treshold
p← G.r

ρ← ‖p‖2 ; σ ← r.p ; τ ← g.r ; t← τ/σ

x← x + t.r ; g ← g − t.p
γ ← (t2.ρ− τ)/τ ; r← γ.r + g

end // while

It can be noticed that the main loop applies simple vector oper-
ations, and a single matrix-vector product per iteration. The ma-
trix G = At.A is sparse, and can be stored in compressed form :
each rowi of G is then represented by a list of couples{(j, gi,j)},
where only non-zero entries are represented. This representation
of G allows an efficient implementation of the matrix-vector prod-
uct involved in the main loop of the algorithm. Knowing the set
of relations{ak,i}, bk, it is easy to iteratively construct the matrix
G = At.A in compressed form, and the vectorc = −At.b, by
adding the contribution of each term to the corresponding coeffi-
cient.
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Figure 8: A : non-zero entries of theG = AtA matrix. Each row has(2q̄ − 2)2 non-zero coefficients, wherēq denotes the average number of vertices per polygon ; B,C :
Compared convergence of our method (continuous red) and a relaxation based method (dashed blue), in function of iterations and time, respectively.

4.2 Time and Space Complexity

Since each edge of the mesh yields a regularization term, the co-
efficients yielded by theCfit andCgradterms can be neglected in
the complexity analysis. If we consider a mesh with an average
of q̄ vertices per polygon, then each row ofA corresponding to
a Creg(i1,i2) term has2.q̄ − 2 non-zero coefficients (the number
of vertices shown in figure6). Then, the matrixG = At.A has
(2.q̄ − 2)2 non-zero coefficient per row. Theoretically, for this sys-
tem of dimension2.n, the conjugate gradient algorithm converges
in 2.n iterations at most. From this simple analysis, it can be con-
cluded that :

• Theoretically, the optimum is found inO(q̄2.n2) operations
(as shown further, it can be much less in practice) ;

• The matrixG and the vectorc are constructed inO(q̄2.n)
operations ;

• The matrixG requiresO(q̄2.n) words of memory.

In Figure 8, the results of numerical experiments are shown,
using a triangulated surface having 13000 vertices. Figure8-A
shows the non-zero coefficients of theAt.A matrix. In Figures8-B
and C, the convergence of our method is studied, and compared
with the successive over relaxation solver (SOR) used in [16].
The curves show the log of the residual norm, in function of the
iterations and time respectively. As can be seen, our method
converges in less iterations. The method used in [16] consists of
a SOR method, where the coefficients ofG are evaluated on the
fly. In contrast, in our method, since the matrixG is pre-computed,
each iteration takes less time. Various experiments have shown that
a toleranceε = 10−5 for the norm of the residual gives visually ac-
curate results. With our method, for the 13000 vertices triangulated
surface, this threshold is reached after 374 iterations, in 12 seconds.

Statistics for various data sets are shown in Figure9 (face hr is
a refined version offace). The initial parameterization is created
by starting from a projection used as the initial vectorx0 for the
algorithm. As can be seen in the table, a non-distorting parameteri-
zation is created in much less iterations than the theoretical number
(i.e. 2.n). Using this method, a mesh made of 50k triangles can
be parameterized in less than 100 seconds on a 400 Mhz Pentium
II. The table shows also the average time spent in updating the
solution when the set of constraints is modified.

As far as memory is concerned, a surface of 50k triangles re-
quires 6.5 megabytes of memory for the compressed representation
of the system. For such a mesh, this representation is constructed
in less than 2 seconds. For larger surfaces, if the system does not

A B C

dataset ] vrtx. ] facets q̄ G ] iter. initial update
(s) initial (s) (s)

A: face 3254 3209 ' 4 0.15 558 7.62 2
face hr 12917 12818 ' 4 0.83 706 43 8

B: Higea 18842 37279 3 1.03 688 65.8 12
C: woman 25298 50063 3 1.34 735 95.7 16

Figure 9: Statistics of the solver, applied to various data sets. For each data set,
the table shows the time to construct the matrixG, the number of iterations and time
to compute the initial parameterization, and the time to update the solution when a
constraint is modified. These times have been measured using a 400 Mhz Pentium II.
Textured models are shown further.

fit in memory, it is possible to consider the mesh as a compressed
representation of the matrixA, and compute the coefficients ofG
on the fly. Then, solving the system is supposed to take(2.q̄ − 2)
times more time than whenG is stored, which has been confirmed
by our experiments.

5 RESULTS

Several examples are shown in the figures below. Figure10 shows
our method applied to the classicalBunnydata set. For this data set,
the obtained mapping is valid (i.e. one-to-one), but deformations
appear at the level of the ears. For this type of mesh, it is preferable
to use our approach to parameterize the charts of a texture-atlas. It
can be also noticed that our method does not guarantee the absence
of overlaps. In our experiments, they were seldom encountered, and
appeared in zones of high negative curvature, such as near the horns
of the cow. In this case, it is easy to manually fix the problem, by
adding a constraint. Despite these limitations, our method is easy
to use, and has been successfully applied to various data sets. In
Figure11, the mouth is treated using the method presented in [16],
to make the mapping continuous across it. For each example, the
total session time is indicated (using a 400 Mhz Pentium II PC).



Figure 10:Parameterizing theBunnydata set.

6 CONCLUSION

The methods presented in this paper allow new texturing tools to be
implemented. Our approach may be thought of as amorphingtool,
operating on curved tesselated surfaces. Various applications of the
method can be imagined, in particular, we think that this method in-
tegrated in a 3D paint system (see e.g. [23]) could make the creation
process easier, by freeing the artist from technicalities encountered
in existing texturing packages. We will consider this latter aspect
in future works. Applications to 3D gridding can also be imagined.
For this type of applications, this tool could be incorporated into the
Gocad software, a 3D modeler used in the oil and gas industry.
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Figure 12:Mapping two different images onto theFacedata set. The texture and iso-parametrics are shown for both. As can be seen, the mapping smoothly interpolates and
extrapolates the feature points. (total session time : 5 min. for each)

Figure 13:Texturing theHigeadata set. For this data set, 32 feature points have been specified. (total session time : 15 min.)

Figure 14:A cow textured with a tiger and a young cheetah (total session time : 10 min. for each)
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