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A: Due to shadows, scanned meshes often have complex holes and irregular borders. B: a global parameterization of the
surface is computed. C: filling the holes and extrapolating the borders become 2D problems in parameter space. D: The

locations of the new vertices in 3D space are computed by approximating a minimal energy surface (MES).

Abstract

Shape optimization and surface fairing for polygon meshes have
been active research areas for the last few years. Existing ap-
proaches either require the border of the surface to be fixed, or are
only applicable to closed surfaces. In this paper, we propose a new
approach, that computes natural boundaries. This makes it possi-
ble not only to smooth an existing geometry, but also to extrapolate
its shape beyond the existing border. Our approach is based on a
global parameterization of the surface and on a minimization of the
squared curvatures, discretized on the edges of the surface. The so-
constructed surface is an approximation of a minimal energy sur-
face (MES). Using a global parameterization makes it possible to
completely decouple the outer fairness (surface smoothness) from
the inner fairness (mesh quality). In addition, the parameter space
provides the user with a new means of controlling the shape of the
surface. When used as a geometry filter, our approach computes a
smoothed mesh that is discrete conformal to the original one. This
allows smoothing textured meshes without introducing distortions.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations.

Keywords: shape optimization, polygon meshes, differential ge-
ometry, minimal energy surfaces, natural boundaries

1 Introduction

Geometric Design has defined tools to process and create geometry.
The following three operators are widely used to optimize the shape
of surfaces:

� Surface fairing used, for instance, to remove the high-frequency
noise from a scanned surface;

� Surface blending, whose goal is to create a surface that
smoothly connects an existing set of patches;

� Surface extrapolation, used to extend the shape of an existing
surface.

Using differential geometry, it is possible to define the criteria
that should be met by the constructed surfaces. This was initially
applied to parametric surfaces (see e.g. [Moreton and Séquin
1992]).

Mesh models are among the most common representations of
surface geometry in Computer Graphics, and adapting geometric
design tools to this type of representation has been an active
research area for the last few years (see e.g. [Kobbelt 1997]).
In the specific case of a mesh model, not only the shape of the
surface, referred to as the outer fairness, should be considered, but
also the quality of the triangulation, referred to as the inner fairness.

Surface fairing and surface blending have been well studied for
mesh models, and have now efficient discrete counterparts. How-
ever, existing discrete fairing methods either need the border of the
surface to be fixed, or can only be applied to closed surfaces. This
prevents these methods from being uses as surface extrapolators. In
this paper, we propose a new discrete fairing method that does not
suffer from this limitation, which allows implementing new geo-
metric design tools for meshed models.



Figure 1: Extrapolation and border editing in parameter space. A: original surface; B: constrained triangulation of the parameter space; C:
extrapolating a minimal energy surface; D: the border has been edited and the constrained triangulation reconstructed; E: resulting surface:
changing the border in parameter space means cropping a “virtual” surface, extrapolated from the initial surface.

1.1 Previous Work

Mesh fairing methods can be classified into two main categories,
geometric filtering and geometric optimization:

In geometric filtering approaches, the goal is often to remove
high frequencies from an initial mesh. Discrete diffusion is pro-
posed in [Taubin 1995], in which signal processing provides an el-
egant mathematical background to study these problems. Discrete
diffusion has been then improved in [Desbrun et al. 1999] by in-
troducing a more stable smoothing operator, which allows using
larger values for the smoothing parameter. The method proposed
in [Ohtake et al. 2000] combines discrete diffusion with an inner
fairness criterion, in order to improve the quality of the mesh. All
the methods mentioned above are very useful for filtering noisy ge-
ometries, but since only G0 continuity is ensured, it is difficult to
use them for surface design. Higher order continuity can be ob-
tained by combining two smoothing steps [Taubin 1995], or using
curvature flows of higher orders [Brakke 1992; Hsu et al. 1992;
Chopp and Sethian 1999].

In geometric optimization approaches (see e.g. [Burchard
et al. 1994]), global fairness criteria are defined and optimized.
Fairness is often defined using notions from differential geometry
(mean curvature, Gaussian curvature . . . ) or approximation of
physics (thin-plate energy). This family of methods has been
first defined for parametric surfaces, for which optimizing the
fairness means solving a Partial Differential Equation [Bloor
and Wilson 1990]. The differential operators involved in these
PDEs can be approximated on polygonal meshes. In [Pinkall
and Polthier 1993], a method is proposed to construct discrete
minimal surfaces (i.e. surfaces of minimal area) by minimizing
the Dirichlet energy (i.e. the integral of the squared Laplacian)
relative to a conformal parameterization. The methods proposed
in [Mallet 1992] and in [Kobbelt et al. 1998] also minimize an
approximation of the Dirichlet energy. Note that for these two
methods, the used local parameterizations are not necessarily
conformal, which means the Dirichlet energy does not necessarily
correspond to the area of the surface. In [Welch and Witkin 1994],
an approximation of curvature is defined for triangulated surfaces,
together with a minimization algorithm. In [Schneider and Kobbelt
2000; Schneider and Kobbelt n. d.], they propose to minimize
the Laplacian of the mean curvature, an intrinsic geometric value
measuring the variation of the curvature. Kobbelt coined the

term Discrete Fairing in [Kobbelt 1997] to categorize the family
of methods based on the optimization of differential operators
approximated on meshes.

For both families of methods, the Laplacian operator plays an
important role. For instance, the Dirichlet energy is the integral
of the squared Laplacian. To approximate the Laplacian on a
polygonal mesh, several numerical schemes have been proposed,
based on local parameterizations [Taubin 1995; Kobbelt et al.
1998; Desbrun et al. 1999; Guskov et al. 1999].

Note that meshed models can also be obtained from unorganized
set of points by using reconstruction methods and level set represen-
tations. The methods described in [Boissonnat and Cazals 2002],
[Museth et al. 2002] and [Carr et al. 2001] reconstruct a function
from R

3 to R fitted to set of points. The reconstructed surface
is obtained as the zero-set of this function, extracted by applying
marching-cube-like methods. As in these two latter methods, our
approach minimizes an objective function based on differential op-
erators. The main difference is that it operates on the meshed model
directly rather than fitting an intermediary representation.

1.2 Overview

In this paper, we present the Dual Domain Extrapolation method, a
new mesh fairing approach with the following characteristics:
� A discrete approximant of the Minimal Energy Surfaces (MES)

criterion is defined and efficiently minimized thanks to Newton’s
multivariate non-linear optimization method;

� The method does not need any boundary condition. Therefore,
the border of the surface is naturally extrapolated;

� Thanks to a global parameterization, it is possible to completely
dissociate the outer fairness (surface quality) from the inner fair-
ness (mesh quality);

� The global shape of the surface is not affected by the discretiza-
tion;

� Using a global parameterization provides the user with new
means of designing the shape of the surface. By designing the
shape of the border in parameter space, the user trims a virtual
surface, extrapolated from the initial surface.

� Any vertex of the initial surface may be constrained or let free to
move. The method can be used as an extrapolator as well as a
low pass filter;



Figure 2: DDE used to smooth a mesh in user-selected zones. The
mesh in the smoothed regions is discrete conformal to the original
one.

� When our method is used as a low pass filter, the smoothed sur-
face is discrete conformal to the original one, which means tex-
tured models can be filtered without introducing any texture de-
formation;

� Limitations of the method: since it is based on a global parame-
terization with natural boundaries, our method is only applicable
if such a parameterization can be constructed. The surface needs
to be homeomorphic to a disc (however, a user-assisted solution
is proposed for surfaces of higher genus), and global overlaps
need to be avoided (this will be discussed in Section 2.1).
The paper is organized as follows. The next section introduces

the approximation scheme used to compute the curvatures, and the
objective function minimized by our method. Section 3 presents
some results obtained with our method used as an extrapolator, a
low-pass filter, or as a geometric design tool. The paper concludes
with possible improvements of the method.

2 Dual Domain Extrapolation

Minimal Energy Surfaces (MES) are defined to be surfaces that
minimize the following objective function:

EMES =
∫

Ω

κ2
min +κ2

max dudv (1)

Our goal is to define a discrete approximant of this energy with
the possibility of optimizing the geometry of a triangulated surface
without any boundary condition. To approximate the differential
operators involved in this type of energy, existing mesh fairing ap-
proaches use local parameterizations. For instance, to approximate
the Dirichlet energy, the umbrella operator used in [Kobbelt et al.
1998] is defined at each vertex relative to a parameterization of its
1-ring neighbors. Unfortunately, the shape of the obtained surface
is dependent on the expression of these local parameterizations.
Moreover, they introduce an unwanted coupling between the outer
fairness (surface quality) and the inner fairness (mesh quality).
This can be improved by using more elaborated numerical schemes
[Schneider and Kobbelt 2000; Schneider and Kobbelt n. d.].

To overcome these problems, instead of using local parame-
terizations, our approach is based on a global parameterization
of the surface. Moreover, expressing the MES criterion as a
coupling between global (u,v) coordinates and geometric (x,y,z)
coordinates makes it unnecessary to fix the boundaries of the
surface. A global parameterization was already used to define
very flexible remeshing algorithms in [Alliez et al. 2002], in
which re-triangulation is performed in parameter space. Our
method is also based on the idea of using the parameter space,

u

v

ΩRI 2 RI 3

S

x(u,v)

w v

u

α

Figure 3: Computing directional curvatures on a surface.

with the difference that triangles are created beyond the border
of the parameter space, or in zones corresponding to holes of the
original surface, where no geometry is known a priori. Optimizing
the location of these vertices in 3D space is then performed by
minimizing our discrete MES criterion.

Our DDE method comprises the following steps:

1. Construct a global parameterization of the surface,

2. (optional) select the zones of the surface that should be
smoothed (see Figure 2),

3. (optional) Fill-in the holes and/or extend the border, by adding
triangles in parameter space, using a Constrained Delaunay
Triangulation (Figure 1-B).

4. Make the mesh regular, by iteratively inserting a new vertex at
the circumcenter of the largest triangle (the Delaunay condi-
tion and constraints are restored by edge swapping), until the
area of the largest triangle is equal to the average area of the
initial triangles,

5. Optimize the new vertices and the vertices belonging to a zone
selected in step 2, by minimizing our discrete approximant of
the MES criterion (Figure 1-C),

6. Remove skinny triangles, by inserting a vertex in the triangle
with the highest area in 3D / area in parameter space ratio (as
in step 4), until the highest ratio reaches the average ratio of
the initial triangles,

7. (optional) Interactively edit the boundary curve in parameter
space (see Figure 1-D). After each modification, steps 3,4,5,6
(triangulation and optimization) are re-executed (Figure 1-E).

2.1 Global parameterization

In our context, to construct a global parameterization of the surface
(step 1), it is necessary to use a method that can compute natu-
ral boundaries, such as MIPS [Hormann and Greiner 2000], ABF
[Sheffer and de Sturler 2001], LSCM [Lévy et al. 2002] or DCP
[Desbrun et al. 2002]. Unfortunately, these methods do not offer
the same guarantees as [Floater 1997], which fixes the border on
a convex polygon. In our case, depending on the used parame-
terization method, overlaps and triangle flips may be encountered.
ABF guarantees the absence of triangle flips, and provides a way of
fixing global overlaps, by adding constraints. However, ABF is nu-
merically expensive, and difficult to apply to large meshes. For this
reason, in our experiments, we have used LSCM, which is much
easier to solve numerically (note that the same result would be ob-
tained with DCP, since it minimizes the same energy as LSCM).
We did not encounter overlaps with our examples, but if they occur,
it is easy to detect them and to switch to ABF.



Figure 4: Outer and inner fairness optimization. A: original mesh with selected zone; parameterization; B: smoothed mesh obtained by min-
imizing the discrete MES criterion. The triangulation is discrete conformal to the original surface; parameterization of the smoothed mesh;
C: result obtained after optimizing the inner fairness (mesh quality) in parameter space and re-optimizing the discrete MES optimization
relative to this new parameterization. Note that the outer and the inner fairness are completely decoupled.

2.2 Curvature approximation

Different approximation schemes for surface curvature were
proposed in the literature. Most of them consider the 1-ring
neighborhoods of the vertices, and compute the curvatures from
quadratic surfaces fitted to the neighborhoods [Welch and Witkin
1994], or directly apply least squares fitting to the eigen structure
of the second fundamental form [Moreton and Séquin 1992],
which avoids ill-conditioning. In our approach, we consider the
neighborhoods of the edges, composed of two triangles, and ap-
proximate the second order derivatives thanks to finite differences.
The resulting numerical scheme is much simpler to compute, and
does not require any boundary condition.

In this section, we consider a surface S provided with a param-
eterization x(., .) : Ω ⊂ R

2 → S;(u,v) 7→ {x(u,v),y(u,v),z(u,v)}.
The directional curvature at a point u = (u,v) relative to a direc-
tion w in parameter space is defined to be the curvature of the curve
α(.) : α(t) = x(u + t.w) (see Figure 3, previous page). It is well
known (see e.g. [do Carmo 1976]) that the curvature is given by
the norm of the second order derivatives of α(.), parameterized by
arc-length s:

κw(u) =

∥

∥

∥

∥

∂ 2α
∂ s2 (0)

∥

∥

∥

∥

(2)

In our case, the surface S is a triangulated mesh, and its param-
eterization x(., .) is a piecewise linear function. For such a surface,
we propose to approximate the second order derivatives using finite
differences between first order derivatives:
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where J(δ ) denotes the Jacobian matrix of x(., .) (i.e. the matrix of
the differential dx) at the point u+δ .w , given by:

J =

(

∂x/∂u ∂y/∂u ∂ z/∂u
∂x/∂v ∂y/∂v ∂ z/∂v

)t
(4)

As shown in Figure 5 below, we consider now an edge e shared
by two triangles T and T ′. In 3D, the points lying on the edge
e can be considered as cylindrical points (having a null minimum
curvature κmin). In parameter space, the principal directions asso-
ciated with κmin and κmax are w1 and w2 respectively, where w1 is
aligned with the edge e in parameter space, and w2 is orthogonal
to w1. Note that since x(., .) is a piecewise linear parameterization,
the Jacobian matrix J is constant over each triangle T , and will be
denoted JT in what follows. The finite difference approximation of
the maximum curvature κmax is then given by:

κmax = κw2
(u) ' 1

2δ

∥

∥

∥

∥

JT .w2
‖JT .w2‖

−
JT ′ .w2
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∥
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JT = 1
2A (T )

(

x1 x2 x3
y1 y2 y3
z1 z2 z3

)(

(v2 − v3) (u3 −u2)

(v3 − v1) (u1 −u3)

(v1 − v2) (u2 −u1)

)
(5)

where A (T ) denotes the area of the triangle T in parameter space.
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Figure 5: Approximating the curvature around an edge e. The
points of e can be considered to be cylindrical, with a null cur-
vature κmin associated with the direction w1 of e, and a maximum
curvature κmax associated with a direction w2, orthogonal to w1



Figure 6: Generating a complex blending surface. The charts are parameterized, the user arranges them in parameter space, a constrained
Delaunay triangulation is computed, and the new vertices are optimized by minimizing the discrete MES criterion.

2.3 Discrete MES optimization

The expression of our discrete MES energy F is then obtained by
summing the approximation of the curvatures (Equation 5) over the
edges e of the triangulation, weighted by the areas of the triangles
T and T ′ in parameter space.

EMES ' F(x) = 1
6δ ∑

e∈E

1
A (T )+A (T ′)

∥

∥

∥

∥

JT .w2(e)
‖JT .w2(e)‖

−
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∥
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∥

2

e = (i, j) ; w2(e) =

[

vi − v j
u j −ui

]

(6)
To minimize the objective function F , we have experimented dif-
ferent strategies (see e.g. [Nocedal and Wright 2000]). Their per-
fomances are compared in section 3:
� Newton’s method: this requires the gradient ∇F and the Hessian

∇2F of the function. For ∇2F , our implementation uses expres-
sions computed in Maple;

� Quasi-Newton BFGS method: only requires ∇F (∇2F is approx-
imated). This gives the best performaces. However, BFGS is
quite difficult to implement;

� SQP (Sequential Quadratic Programming): at each iteration k,
we consider the terms ||JT .w2(e)|| and ||JT ′ .w2(e)|| to be con-
stant. They are initialized to 1 at the first iteration. This ap-
proximate of ∇2F is less accurate than BFGS, and therefore less
efficient, but much easier to implement.

2.4 Inner fairness optimization

As shown in Figure 1, moving the border in parameter space means
letting it ’slide’ along a virtual surface, extrapolated from the initial
patch. Based on this idea, it is possible to optimize the inner fairness
in parameter space (see Figure 4):

1. choose a region of interrest and lock its border;
2. optimize the shape of the triangles in 2D parameter-space, us-

ing Laplacian smoothing;
3. optimize the MES criterion, using the smoothed 2D triangu-

lation as the parameter-space

The vertices “slide” along the virtual smooth surface, while the
global geometry is not altered. The inner fairness is completely
decoupled from the outer fairness.

3 Results and conclusions

Figures 6, 7, 8 show possible applications of DDE. The tool demon-
strated in Figure 6 may have applications in archaeological mod-
eling, providing the user with a flexible and intuitive interface to
repair surfaces (parameter-space “jigsaw”). Table 1 shows the size
of the models, computation times, and number of iterations (the
time spent in the constrained Delaunay triangulation is not included
since it is negligible).

The principal limitation of our method is that it is unable to di-
rectly process a model of arbitrary topology (closed models, donuts,
. . . ). A user-assisted solution to this problem is proposed in Figure
8. More generally, it would be possible to apply our method to an
automatically generated atlas, by adding inter-chart continuity con-
ditions to the objective function. We think it is also possible (and
better) to use local parameterization satisfying compatibilities con-
ditions, obtained thanks to a global optimization process.

As compared to the method presented in [Schneider and Kobbelt
n. d.], the class of surfaces minimizing the MES criterion is not as
general as the one minimizing the Laplacian of the mean curvature.

Figure 7: Dual domain extrapolation and associated parameter
space.



Figure 8: A,B,C: Would you like a cup of tea, Mr. Rabbit ? (Alice’s adventures in Wonderland); D,E,F: associated parameter spaces
(Alice’s adventures in Flatland). For this model, which is not homeomorphic to a disc, DDE was applied to parameterizations constructed in
user-selected zones ( total time of the session: 10 min.)

woman chair statue jigsaw
(1st page) (fig. 1) (fig. 4) (fig. 6)

] initial vertices 21778 3102 18842 13078
LSCM time (s) 17 1.5 15.2 8.8
] free vertices 3357 1246 4109 1871
] Newton iters 4 3 2 3
Newton time (s) 9.2 1.5 16 1.8
] BFGS iters 5 4 4 3
BFGS time (s) 8.1 1.2 12 1.1
] SQP iters 8 5 5 5
SQP time (s) 17 2.8 31 5.1

Table 1: Compared timings for Newton, BFGS and SQP

One of our goals in future research is to find a numerical scheme
that enables natural boundaries to be implemented for this latter
criterion.
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