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Figure 1: Our algorithm produces smooth frame fields in volumes. Frames (a) are represented by spherical harmonic functions (b), attached
to each vertex of a tetrahedral mesh. Streamlines and singularities of the field are shown in yellow and red, respectively.

Abstract

Given a tetrahedral mesh, the algorithm described in this article
produces a smooth 3D frame field, i.e. a set of three orthogonal
directions associated with each vertex of the input mesh. The field
varies smoothly inside the volume, and matches the normals of the
volume boundary. Such a 3D frame field is a key component for
some hexahedral meshing algorithms, where it is used to steer the
placement of the generated elements.

We improve the state-of-the art in terms of quality, efficiency and
reproducibility. Our main contribution is a non-trivial extension in
3D of the existing least-squares approach used for optimizing a 2D
frame field. Our algorithm is inspired by the method proposed by
Huang et al. [2011], improved with an initialization that directly
enforces boundary conditions. Our initialization alone is a fast and
easy way to generate frames fields that are suitable for remeshing
applications. For better robustness and quality, the field can be fur-
ther optimized using nonlinear optimization as in Li et al [2012].
We make the remark that sampling the field on vertices instead of
tetrahedra significantly improves both performance and quality.
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1 Introduction

Given a volume of interest, a 3D frame field can be defined at each
point of the volume as a set of 6 unit vectors, globally invariant
by rotations of π/2 around any of its vectors. One of the main
motivations for generating such direction fields is to use them to
steer the placement of objects within the volume of interest, as in
hex-dominant meshing. Thus, hexahedral meshing is decomposed
into two steps: (1) smooth frame field design and (2) hexahedral
partitioning of the domain aligned with the frame field.

We make the remark that previous frame field generation methods
address the 2D and 3D cases with very different strategies:

• In 2D, frame field design can be restated as vector field design
(a simpler problem), thanks to the introduction of the “rep-
resentation vector”. It replaces a frame (a set of 4 vectors
invariant by rotations of kπ/2) with a 2D vector, and defines
the distance between two frames as the distance between the
corresponding 2D vectors. It leads to a simple optimization
problem that can easily support constraints and data fitting
terms.

• In 3D, it is (unfortunately) not trivial to extend the idea of a
“representation vector”. Instead, Huang et al. [2011] propose
to represent frames by functions defined on the unit sphere
(refer to Fig. 1). They derive a definition of the field smooth-
ness from this representation. The existing approaches op-
timize it in two steps: (1) initialize the field by optimizing
spherical harmonics coefficients (Huang et al.) or propagate
the boundary constraints greedily ([Li et al. 2012]) (2) fur-
ther smooth this result by minimizing a non-convex objective
function, using L-BFGS [Liu et al. 1989]. In this smoothing
step, the frames are represented by Euler angles.

We experimented with Huang’s approach in 2D (§2): each frame
is represented by a sine function. The corresponding 2D optimiza-
tion problem means finding for each frame its coefficients in the
Fourier basis (§2.2), that will minimize the L2 norm between adja-
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cent frames (§2.3), subject to unit function norm constraint (§2.4).
We found that the instantiation of Huang al. [2011] in 2D repro-
duces exactly the same optimization problem as in the current
2D state-of-the-art (§2.5).

Therefore, using the notations introduced for the 2D case, we can
describe the 3D version in §3 and extend the 2D optimization mech-
anism to 3D in §3.5. In the end, our 3D version is very similar to
Huang’s initialization, except that it exactly enforces boundary con-
straints.

• The first difficulty is to find the expression of the boundary
conditions. On the boundary the frames are free to rotate
around the surface normal (§3.4) and it is difficult to enforce
the alignment constraint while preserving this rotational de-
gree of freedom. Previous work [Huang et al. 2011] only par-
tially enforces the alignment condition, resulting in a poor ini-
tialization of the optimization procedure as evaluated in §4.2.

• The second difficulty is that a frame is represented in a 9D
Fourier basis, but the set of admissible functions (those that
correspond to a frame) has dimension 3 (all possible rotations
of the reference frame). Thus, in 2D one simply needs to
normalize the representation vector, whereas in 3D we need
to find the nearest point on the 3D manifold of admissible
vectors embedded in 9D space.

In the present paper, we discuss some evaluation criteria related to
our main envisioned application (hexahedral dominant meshing),
and we show that our algorithm outperforms the state of the art
methods [Huang et al. 2011; Li et al. 2012]. Furthermore, we show
that minor modifications of existing algorithms make them compet-
itive with ours, and that our initialization alone can be sufficient in
many cases.

Previous works

Frame field design on surfaces

Optimizing a frame field inside a 2D shape is very similar to opti-
mizing a direction field on a 3D surface. The differences between
a 2D shape and a 3D surface come from the curvature of the sur-
face in the 3D case (angle defect, hard constraints, curvature fitting
term).

Direction field design on surfaces was introduced by [Hertzmann
and Zorin 2000] for orienting strokes in non-photorealistic render-
ing. In their method, directions are represented by an angle rotation
θ per vertex, and the smoothing is performed by a non-linear solver
(BFGS). In the reference cited above, the “representation vector”
was not yet introduced, and the optimization mechanism they use
is very similar to the smoothing step used in [Huang et al. 2011;
Li et al. 2012] for the 3D frame fields. Solving with a represen-
tation vector v = (r cos(θ), r sin(θ)) for each θ was suggested in
[Ray et al. 2006] for faster results, and improved later for better
control over the field topology [Ray et al. 2009]. Based on repre-
sentation vectors, [Palacios and Zhang 2007a] proposed to control
the field topology by local operations. For direction fields with-
out constraints, fixing the norm of the entire solution instead of the
norm of each representative vector [Knöppel et al. 2013] allows to
find optimal direction fields by solving an eigenvector problem.

Directly optimizing for the angle θ makes it possible to perfectly
control the field topology, but this is obtained at the expense of
solving a mixed-integer system [Ray et al. 2008; Bommes et al.
2009]. In [Palacios and Zhang 2007a], representation vectors are
introduced together with their duality withN th order traceless sym-
metric tensors. This relation is very useful to unify 2D and 3D
frame fields.

Frame field design in volumes

In the computer graphics domain, Huang et al. [2011] bring the
functional representation of 3D frames: they represent frames by a
function defined on a sphere and they store its decomposition in the
spherical harmonics basis.

Their initialization step first creates a smooth spherical harmonic
field. Then, for each sample, they compute the 3D frame that is best
aligned with the spherical harmonic. This initial solution is finally
improved by applying an optimized rotation to each frame. These
rotations are defined by Euler angles and obtained by minimizing
the field smoothness with L-BFGS. Boundary alignment is enforced
by a penalty term.

Li et al. [2012] propose an alternative initialization method. They
design a 2D frame field on the volume boundary, convert it to a 3D
frame field by adding the surface normal and its opposite vector,
and then propagate it inside the volume. The resulting field is fi-
nally smoothed by optimizing a rotation for each frame, similarly
to what is done in [Huang et al. 2011], but with a better optimiza-
tion scheme. They also optimize the singularity graph of the field
by local combinatorial operations, as done by [Jiang et al. 2014].

Our method optimizes for the same objective function as the refer-
ences cited above, but with an initialization step that may be suffi-
cient for remeshing applications. Our smoothing (same as [Li et al.
2012] but with a different sampling) is only required for surfaces
of revolution. The performance of our method is compared with
previous work in §4.

2 Functional representation in 2D

In this section, we explain how 2D algorithms like [Ray et al. 2006;
Kowalski et al. 2012] can be reformulated with a functional repre-
sentation for each frame (instead of a “representation vector”). The
goal of this section is to introduce the concepts and notations in the
simple 2D setting in order to facilitate understanding the 3D setting
(later in Section 3). Note that in the 3D setting there will be no
Gauss curvature. For this reason, we discuss here only the flat 2D
setting (field defined on a subset of IR2 instead of a 3D surface).

2.1 Definitions for the 2D setting

Given a 2D triangulated shape, frame field design in 2D consists
in finding a smooth frame field aligned with the boundary of the
shape. We formulate it as minimizing the field curvature, based on
the following definitions:

• A frame is a set of 4 unit vectors f = {fk}, k ∈ [0, 3] that is
invariant by a rotation of π/2 (Figure 2). It can be represented
by the angle θ such that ∀k, fk = (cos(θ + kπ/2), sin(θ +
kπ/2));

• a frame field is a frame per vertex of the triangulation;

• the boundary constraint: a normal on the boundary must
match one of member vectors of the corresponding boundary
frame;

• the rotation angle between two frames is the angle ∆θ of the
rotation that transforms one frame into the other. This angle
being defined modulo π/2, we choose the ∆θ with minimum
absolute value;

• a triangle is said to be singular if the sum of the rotation an-
gles over its three edges is not equal to 0.
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Figure 2: A 2D frame is a set f of 4 vectors f0, f1, f2, f3 invariant
under rotation by π/2. Its angle representation is the rotation θ
between the global axis x and f0.
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Figure 3: Parametric plot of the reference frame representation
F̃ (α) (left) and an arbitrary frame F (α) (right). The plotted
function is defined by x(α) = (1 + F (α)) cos(α) and y(α) =
(1 + F (α)) sin(α) for α ∈ [0, 2π[. Note that the corresponding
frames are aligned with the maxima of the representation functions.

Representing a frame field by angles is a natural and simple idea,
but it makes it difficult to optimize the field curvature [Bommes
et al. 2009; Ray et al. 2008]. More importantly, this representa-
tion cannot be trivially generalized to 3D frame fields. For these
reasons, we propose to study and fully characterize an alternative
representation, where each frame field is represented by the graph
of a function with the same symmetries as the frame field.

2.2 Functional approach: frame representation

In what follows, the trivial frame f̃ that is aligned with the coor-
dinate axes is called the reference frame. It is defined by f̃ =
{(1, 0), (0, 1), (−1, 0), (0,−1)}. We represent the reference frame
by the function F̃ (α) = cos(4α) with α ∈ [0, 2π[ (Figure 3–left).
One can notice that the graph of this function F̃ (α) is similar to the
frame f̃ it represents1. In particular, it exhibits the same symmetries
and π/2 rotation invariance as f̃ .

Any frame f can be obtained through a rotation of f̃ by a given
angle θ. The functional counterpart is to rotate the graph of the
function F̃ , namely any frame f can be represented by a function
F (α) = F̃ (α − θ) = cos(4(α − θ)) with α ∈ [0, 2π[ (Figure 3–
right).

Since a rotation of the graph does not change the frequencies of
the underlying function, any frame function F (α) can be exactly
represented as a weighted sum of Fourier basis functions cos(4α)
and sin(4α). Indeed, if F (α) represents a rotation of the reference
frame by angle θ, then F (α) = cos(4α−4θ) = cos(4θ) cos(4α)+
sin(4θ) sin(4α).

1Note that representing frames by functions is not completely new: when
expressed in Cartesian coordinates, our reference frame function F̃ is the
polynomial 4(x4 + y4) − 3 restricted to the unit circle, thus this formula-
tion is equivalent to traceless symmetric 4th order tensors (in other words,
degree 4 polynomials) manipulated in [Palacios and Zhang 2007b].

Let us now introduce some notations: let B = (cos(4α), sin(4α))
denotes the row vector of the orthogonal basis functions and a =
(a0, a1)> = (cos(4θ), sin(4θ))> denotes the column vector of co-
ordinates of a function F in the basis B. With these notations, any
frame function F can be represented by its coordinates a in the ba-
sis B, or F = Ba.

A coefficient vector a is feasible if and only if there exists θ such
that a = (cos(4θ), sin(4θ))>. Geometrically, a is constrained to
lie on a curve parameterized by θ. This curve represents, in coeffi-
cient space, all possible rotations of the reference frame. In 2D, this
curve is the unit circle, thus the feasibility constraint on a is simply
a>a = 1.

At this point, we can observe that the coefficient vector a exactly
corresponds to the representation vector used in the direction field
literature, but it comes with a different viewpoint that will have an
importance when moving to the 3D setting in Section 3. Before
moving to the 3D setting, we explain how the objective function
that expresses the field smoothness can be defined, as well as the
constraints it should satisfy.

2.3 Functional approach: objective function

The objective function that we minimize is defined as a sum over
each edge of the squared differences between the frames at the
edges extremities. In our formulation, the difference between two
frames (at vertices i and j) is not the rotation angle, but the L2

distance
∫ 2π

0
(F j(α)− F i(α))2dα, which can be simplified as:

E =
∑
ij

∫ 2π

0

(F j(α)− F i(α))2dα

=
∑
ij

∫ 2π

0

(Baj −Bai)2dα

=
∑
ij

(aj − ai)>
(∫ 2π

0

B>Bdα

)
(aj − ai)

= π
∑
ij

‖aj − ai‖2 (1)

In Equation 1 above, the last step is justified because the function
basis B is orthogonal (< cos(4α), sin(4α) > = 0). One can also
notice that all feasible functions are of norm

√
π.

2.4 Functional approach: constraints and boundary
conditions

As discussed in §2.2, the first constraint is that the variables ai must
be feasible (i.e. there should exist a frame represented by ai).

As for boundary conditions, frames on boundary vertices i must
have one member vector equal to the normal direction. If θi denotes
the normal direction, the frame functions on boundary vertices are
constrained by two equations:

ai0 = cos(4θi) ; ai1 = sin(4θi)

2.5 Implementation

At this point, our optimization problem consists in minimizing the
objective function E (eq. (1)) subject to linear equality constraints
on boundary vertices (eq. (2)) and quadratic equality constraints



ai
>
ai = 1 for each vertex i. We first minimize the quadratic energy

without the constraint ai>ai = 1, then choose the nearest feasible
solution by normalizing ai.

Here, we relax the feasibility constraints, so we need to minimize
the quadratic function E subject to linear boundary constraints.
To do that, we simply replace the linear constraints with a strong
penalty term in the objective function, leading to a new quadratic
function to optimize. This penalty method is very simple and suffi-
cient in practice.

In more details, the new quadratic function is expressed in the form
‖AX − b‖2 where A is a matrix, X our variable vector (X2i =
ai0 and X2i+1 = ai1) and b is a vector. The system of equations
AX − b = 0 is constructed line-by-line:

• initial objective function E: for each edge ij, we add two
equations (eq. (1)):

√
π(X2i −X2j) = 0

√
π(X2i+1 −X2j+1) = 0

• boundary constraints: for each boundary vertex i, we add two
equations (eq. (2)):

CX2i = C cos 4θi

CX2i+1 = C sin 4θi,

where the constantC is set asC = 100 in all our experimental
results reported here.

From A and b, we just need to solve the linear system A>AX =
A>b to obtain a minimizer of ‖AX−b‖2. Then fromX we can ob-
tain an initialization of ai by projecting the corresponding vectors
onto the set of feasible coefficients:

ai ← (X2i, X2i+1)>/‖(X2i, X2i+1)‖.

To solve the linear system, we use the OpenNL library [Lévy 2001],
which automatically constructs A>AX = A>b from the set of lin-
ear equations and then solves it by the Jacobi-preconditioned con-
jugate gradient method. We obtain in the end an algorithm that is
very similar to the one in [Knöppel et al. 2013] or to the initializa-
tion in [Ray et al. 2006; Kowalski et al. 2012]. Smoothness can be
further improved by a nonlinear solver initialized with this initial
guess, as done in [Ray et al. 2006; Kowalski et al. 2012]

3 Optimization of 3D frame fields

The representation vector used by previous work was the key to ef-
ficiently optimize direction fields in 2D, however, generalizing it to
the 3D setting is non-trivial. We now explain how the functional
representation viewpoint of the 2D problem (§2) can be naturally
generalized to the 3D setting. We present below the functional rep-
resentation of 3D direction fields, the constraints they need to sat-
isfy and derive an efficient optimization algorithm.

3.1 Definitions for the 3D setting

Given a tetrahedral mesh, our goal is now to create a smooth frame
field that is aligned with the boundary of the mesh. We first intro-
duce the following notions:

• The reference frame f̃ is the set of 6 unit vectors aligned
with coordinate axes (Figure 4);

• a frame is the reference frame rotated by a 3× 3 orthonormal
matrix R: f = Rf̃ ;

• a frame field associates a frame to each vertex of the tetrahe-
dral mesh;

• the boundary constraint ensures that the frame of a boundary
vertex has one of its member vectors equal to the normal at the
boundary;

• a tetrahedron is said to be singular if any of its triangles is
singular. The triangle ijk is singular if and only if Rij ×
Rjk × Rki 6= Id, where Rij denotes the rotation matrix that
brings the frame f i to the frame f j .

• the stable direction of a singular tetrahedron’s facet is the set
of 2 unit vectors {~v,−~v} such that Rij × Rjk × Rki~v = ~v.
Having a stable direction is a necessary condition to produce
hexahedral meshes that [Li et al. 2012; Jiang et al. 2014] are
enforcing (on the dual mesh). It is also assumed in the defi-
nition of singularities [Persson et al. 2014] using local projec-
tions.

3.2 Frame representation

Like Huang et al.[2011], we represent a frame by a polynomial,
whose restriction to the unit sphere exhibits the 24 symmetries of
a cube. The lowest degree of such a polynomial is 4, thus our ref-
erence frame (up to a scaling factor and a constant summand) is
the polynomial x4 + y4 + z4 restricted to the unit sphere, refer to
Figure 4 for an illustration.

In the 2D setting, we decomposed the reference frame polynomial
onto the Fourier basis, and our variables were the coordinates in
this basis (they correspond to the representation vector). We apply
the same technique in 3D: we decompose the function x4 +y4 +z4

onto the basis of spherical harmonics. Note that it is composed
of a single component of frequency 4 (we removed the constant
summand and normalized the function). Thus, the reference frame
f̃ is represented by the function F̃ defined by:

F̃ =

√
7

12
Y4,0 +

√
5

12
Y4,4, (2)

where Yl,m is the real-valued spherical harmonic of degree l and
order m (see the supplemental material for more details). These
harmonics are sometimes called tesseral [Ferrers 1877, p. 74]. The
list of harmonics of degree 4 can be found in [Görller-Walrand and
Binnemans 1996, p. 239]). The function F̃ is defined over the entire
space R3 → R, but here we are only interested in its restriction to
the unit sphere S2 → R.

An arbitrary frame f can be obtained as a rotation of f̃ by a matrix
R. Thus, it is represented by the function F (P ) = F̃ (RP ), where
P is a point of the unit sphere (Figure 4).

The family of functions Yl,m forms a function basis over the unit
sphere. Clearly, applying a rotation to a spherical harmonic of de-
gree l does not change its degree (it produces another spherical
harmonic of degree l). This invariance is quite natural: for ex-
ample, translating a 1D function does not change its frequencies,
thus the degree of functions in the Fourier basis is not changed
upon a translation. We represent the reference frame F̃ by a sum
of two spherical harmonics of degree 4 (Equation (2)), so any
frame function F can be exactly represented in the basis B =
(Y4,−4, Y4,−3, . . . , Y4,4).

Let us express the reference frame function in this basis: F̃ = Bã

with ã =
(

0, 0, 0, 0,
√

7
12
, 0, 0, 0,

√
5
12

)>
, here B is a row vec-
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Figure 4: An arbitrary frame f corresponds to the reference frame
f̃ rotated by a 3 × 3 matrix R. The graphs of the corresponding
functions F and F̃ are also rotated byR, and their coefficients vec-
tors verify a = RB ã where RB is a 9× 9 rotation matrix (deriva-
tion detailed in the supplemental material).

tor and ã is a column vector, so F̃ is a scalar function defined on
the unit sphere. Any other frame f = Rf̃ can be represented as
F = Ba, where a = RB ã with RB being a 9 × 9 rotation matrix
acting on the coefficients space. The formulas and technical details
behind these rotation matrices are also provided in the supplemental
material.

A feasible coefficient vector a corresponds to the reference vector
ã transformed by a rotation. In other words, it is a vector that can
be written as a = RB ã where RB is a 9D rotation matrix that can
be derived from a 3D rotation (determined by 3 parameters). Thus,
a is geometrically constrained to lie on a manifold of dimension 3
embedded in the 9D coefficient space.

At this point, one can consider the coefficient vector a as an exten-
sion of the representative vector used in the direction field literature.
It also corresponds to the representation introduced in [Huang et al.
2011].

3.3 Objective function

As in the 2D setting, the objective function is defined as the sum
over each edge ij of the squared difference between frames located
at the edges extremities. In our formulation, the difference between
two frames is the L2 norm of the difference between the corre-
sponding functions, defined as:

E =
∑
ij

∫
S2

(F j(α)− F i(α))2dα

Since the function basis B is orthonormal, E can be simplified as:

E =
∑
ij

‖aj − ai‖2 (3)

3.4 Constraints and Boundary Conditions

There are two types of constraints that need to be satisfied by the
coefficient vectors: first, each coefficient vector ai needs to be fea-
sible and second, frames on boundary vertices must have one vector
aligned with the normal at the volume boundary. We already men-
tioned the first constraint at the end of §3.2. It is enforced by our
optimizer in a dedicated “projection” step (3D counterpart of the
normalization of a in 2D case). More details about it are given in
the supplemental material.

We now focus on the boundary conditions, which have more partic-
ular cases than in 2D, depending whether the considered boundary
vertex is smooth, on a crease or on a corner.

Smooth vertex

We assume first that there is only one normal associated with the
vertex, it can be computed as the average normal vector of incident
boundary triangles.

Case 1: the normal is equal to the z axis.

Let us first consider the case where the fixed vector (the surface
normal) corresponds to the z axis. If we rotate F̃ around z by an
angle θ, we obtain a = RB ã with RB being a rotation around z.
The simple structure of RB together with the zero coefficients of ã
gives the equation:

a =

(√
5

12
sin 4θ, 0, 0, 0,

√
7

12
, 0, 0, 0,

√
5

12
cos 4θ

)>

As done in the construction of coefficient vectors in the 2D case, we
can get rid of the angle θ by replacing it by a vector c = (c0, c1) =(√

5
12

cos 4θ,
√

5
12

sin 4θ
)

.

a =

√
7

12
(0, 0, 0, 0, 1, 0, 0, 0, 0)> (4)

+ c0(0, 0, 0, 0, 0, 0, 0, 0, 1)>

+ c1(1, 0, 0, 0, 0, 0, 0, 0, 0)>

With this equation, all frames with one of their vector that corre-
sponds to z can be represented by the 2D vector c. As in the 2D
case, this equation comes with a norm constraint: c20 + c21 = 5

12
.

The variable c defines the rotation of the frame around the surface
normal. In other words, it defines a 2D frame field. Optimizing this
2D frame field using c as variables is exactly what we did in 2D
by introducing the coefficient vector a. Our 3D solution restricted
to the object boundary is therefore almost 2 equivalent to our 2D
solution.

Case 2: the normal is not equal to the z axis.

In this (more general) case, we rotate the constraint. If we want the
vector ~n to be preserved, we first compute a rotation that brings the
z axis to ~n. From this rotation, we compute the corresponding 9D
rotation matrix RB , and derive the constraints:

a =

√
7

12
RB(0, 0, 0, 0, 1, 0, 0, 0, 0)> (5)

+ c0RB(0, 0, 0, 0, 0, 0, 0, 0, 1)>

+ c1RB(1, 0, 0, 0, 0, 0, 0, 0, 0)>

This expression of the normal constraint gives us a set of 9 linear
equations per boundary vertex. It introduces two new variables c0
and c1, and a quadratic constraint c>c = 5/12.

Note As in the 2D case, the boundary constraint has a simpler ex-
pression [Huang et al. 2011]: a>RB(0, 0, 0, 0, 1, 0, 0, 0, 0)> =√

7
12

that is valid only if all ai are feasible, which is not ensured
by their method. As a consequence, it cannot be safely used during
the initialization step. We discuss the practical consequences later,
and show a comparison in Figure 9.

2The boundary has curvature that is not present in the (flat) 2D setting.



Non-smooth vertices

Frames of vertices located on non-smooth vertices (creases, hard
edges and corners) have to conform to more than one normal. These
vertices have multiple normal constraints, we pick two normals that
are almost orthogonal, perturb them (by rotations around their cross
product vector) to make them orthogonal, and compute the rotation
that brings x to the first normal, and y to the second normal. We
compute the corresponding coefficient-space rotation RB and fix
the frame coefficient vector ai to RB ã.

3.5 Implementation

We now have to minimize our objective function (eq. (3)) with lin-
ear equality constraints on boundary vertices (eq. (5)), quadratic
equality constraints ci · ci> = 1 on boundary vertices, and fea-
sibility constraints for ai. Algorithm 1 describes our optimization
process.

First of all, as in the 2D case (in §2.5), our initialization step is
formulated as a least squares problem (minimize ‖AX−b‖2), con-
structed without the feasibility constraint on ai (line 1).

Then, the minimizer of the least-squares problem is projected onto
the manifold of valid frames (lines 2-4). The projection f i ←
closest frame(ai) onto the set of feasible coefficient vectors is no
longer a simple normalization of representation vectors, as it was
in 2D. Instead we perform, for each vertex, a gradient descent. In
more details, starting with a seed frame, we rotate it gradually in
order to minimize the distance between the current frame function
and the function to be projected. The gradient is evaluated by calcu-
lating the variation of the L2 norm induced by infinitesimal rotation
matrices with Euler’s angles. We do not have a formal proof, but
we conjecture that there is a single minimum of the L2 norm.

Finally, starting with the initial field, we smooth it using L-BFGS
(lines 5-7). Since at this step we already have valid frames, we
use Euler angles (rotation with respect to the reference frame) as
variables in the L-BFGS optimization procedure. On the boundary
of the volume each frame is represented by one angle representing
a rotation around the surface normal. Note that each frame can
be represented by 48 triplets of equivalent Euler angles. In our
implementation we choose the triplet that maximizes the distance
to the nearest gimbal lock. An extensive description of all steps is
provided in the supplemental material.

Algorithm 1: Frame field optimization
Input: A tetrahedral meshM with nv vertices including nl

vertices with normal constraint
Output: A frame f i for each vertex i

1 {ai}nv
i=1 ← argmin E({ai}) subject to normal (5), but not

feasibility constraints ; // solve a linear system
2 foreach i < nv do
3 f i ← closest frame(ai); // project onto feasible manifold
4 end
5 repeat
6 L-BFGS iteration on E({f i}) subject to feasibility and

normal constraints
7 until ∆E/E < 10−5 or time exceeds;

4 Results

First, we observe that minor modifications of the methods intro-
duced in previous work can significantly improve the result. We
obtained much better results than Huang et al. by sampling the

Figure 5: The frame field initialized by Li et al.’s front propagation
(left) has a better smoothness energy than ours (right). However it
yields a lower proportion of hexahedra. Therefore, the quality of the
singularity graph is more important than the smoothness energy.

field on vertices instead of tetrahedra facets. It does not avoid de-
generate cases, as shown if Figure 9, but better captures the global
shape of the object. The running time also significantly decreases.
So, this section does not only compare our algorithm to previous
work, but also evaluates benefits of our initialization alone and the
impact of sampling on vertices (instead of tetrahedra or tetrahedra
facets).

The main challenge here is to find a fair way to evaluate the field
quality: a natural idea would be to evaluate and compare the val-
ues of the objective function (eq.3). However, we noticed that in
the global value of the objective function, singular regions of the
field have a dominating influence. As a consequence, a lower value
does not mean that the corresponding field is better suited to hex-
dominant meshing. We illustrate this remark in Figure 5, which
shows an example where a field with higher objective function pro-
duces a considerably lower proportion of non-hexahedral elements.

A better option would be to compare the quality of the mesh pro-
duced from these fields, but the state-of-the art algorithms [Nieser
et al. 2011; Li et al. 2012; Jiang et al. 2014] are not robust enough
for testing a large collection of objects. Moreover, it is difficult
to separate the impact of the meshing scheme from the underlying
field quality. We propose an alternative solution that estimates how
the field’s singularity graph is suitable for hex remeshing, and com-
pare it in Table 1. The next section describes the protocol that we
used. In addition, in the supplemental material, we show the hexa-
hedra produced by CubeCover applied to the original mesh minus
the singular tetrahedra. It gives an intuition about what could be
expected from a hex-dominant meshing algorithm.

After a brief description of our experimental protocol, we present
the results and compare the methods.

4.1 Experimental protocol

We cannot predict whether it is possible to produce a nice hex mesh
from a given frame field. However, we know a necessary condi-
tion: [Nieser et al. 2011, §2.2] have proven that a singularity of a
volume parameterization is always similar to a 2D singularity ex-
truded along the third coordinate. In our setting, it means that the
singularities must admit a stable direction (refer to § 3.1 for the def-
initions of singularities and stable directions) and it must be equal
to this third coordinate. Note that only the existence of a stable
direction was enforced by local operations in [Li et al. 2012].

According to this observation, we derive the following measure of
field quality: first, we extract the singularity graph i.e. for each
singular triangle, we create a segment linking the barycenters of its
adjacent tetrahedra, then we smooth the geometry of this graph to
remove the high-frequency noise that is due to the discretization.
Next, for each segment, we determine the stable direction of its



Model Size Incompat. singularities Time (s)
our method Huang et al. Li et al. our method Huang et al. Li et al.

(K tets) full init only original modified original modified full init only original modified original modified
p1 6 0 2 0 0 0 0 1 0 4 33 1 2
p2 7 1 0 58 1 3 1 0 0 9 22 1 0
p3 11 0 0 3 0 4 0 0 0 10 25 2 0
p4 12 0 0 0 0 1 0 1 0 33 66 2 1
p5 17 2 2 117 2 3 2 1 0 33 174 3 2
p6 17 0 0 0 0 0 0 1 0 20 31 2 2
p7 18 8 16 21 10 12 6 2 0 58 198 4 3
p8 21 0 0 1 0 0 0 1 0 45 34 3 1
p9 22 0 5 11 0 9 0 2 0 21 72 8 3

p10 27 17 293 154 12 47 19 9 0 27 278 52 6
p11 34 71 125 136 78 61 85 2 1 64 248 28 4
p12 40 21 13 50 24 34 32 5 1 62 123 38 11
p13 46 85 170 200 93 145 101 7 1 71 246 72 9
p14 61 0 1 28 0 1 0 5 1 295 419 29 7
p15 69 89 113 69 107 36 94 3 1 184 280 54 4
p16 112 53 101 127 53 103 50 19 3 513 623 50 18
p17 121 25 326 154 18 110 33 30 1 183 606 278 57
p18 130 61 104 162 68 128 72 12 3 663 592 61 24
p19 239 61 34 71 59 42 69 23 6 750 630 145 23
p20 258 0 49 23 7 114 2 59 11 1447 701 603 112
p21 268 9 10 22 15 61 9 26 8 656 619 288 45
p22 328 186 399 694 236 424 242 64 10 1026 632 593 91
p23 335 0 3 20 0 54 0 204 9 810 622 361 252
p24 356 105 134 320 84 220 112 53 9 2563 740 344 82
p25 410 135 454 417 202 474 185 177 9 826 619 605 156
p26 437 0 0 0 0 138 0 42 15 2044 685 428 130
p27 448 37 179 44 22 177 28 276 7 1046 626 607 321
p28 634 46 77 79 57 56 49 98 18 1548 650 607 111
p29 790 12 51 58 12 211 31 120 26 1634 667 542 410
p30 824 357 1477 1334 353 1170 353 358 17 1662 711 611 256
p31 848 43 192 196 52 220 51 494 33 2461 656 614 249
p32 968 1451 3472 4222 1621 2644 1642 109 25 2582 531 608 97
p33 1147 1 0 39 1 0 1 133 35 2739 728 618 77
p34 1425 36 91 93 48 181 38 350 63 2987 738 618 286
p35 1607 265 381 1217 291 1106 289 178 51 5093 992 619 200
p36 1650 402 1201 2100 500 1655 404 605 50 2470 728 618 604

Table 1: Evaluation of our algorithm (with and without the smoothing step), and Huang et al.’s algorithm (sampled on faces and sampled
on vertices) with a high penalty given to the boundary condition, and Li et al.’s algorithm (sampled on tetrahedra and sampled on vertices).
Column 1 is the model identifier used in the supplemental material, column 2 gives the model size (in thousands of tetrahedra), columns
3,4,5,6,7,8 report the total length of the singularity graph that is incompatible with hex remeshing (refer to §4.1), columns 9,10,11,12,13,14
report running times in seconds. We stop L-BFGS iterations when ∆E/E < 10−5.

corresponding singular triangle. If it exists and its deviation from
the segment direction is smaller than π/4, then we consider that it
can be used for hex-meshing. Otherwise this part of the singular-
ity graph is considered to be incompatible with hex meshing (see
Figure 6 for an illustration).

Table 1 compares the total length of hex-incompatible singularities
and the timings for our algorithm, Huang et al.’s algorithm and Li et
al.’s algorithm. We also evaluate the potential of using our initial-
ization alone, without the subsequent nonlinear smoothing steps, as
a much simpler and faster alternative to the overall algorithm. To
evaluate the impact of the sampling, we report the statistics of pre-
vious works with the initial sampling (on tetrahedra) and with our
sampling (on vertices). Note that for Huang et al.’s algorithm, our
sampling also introduces non-smooth vertices (§3.4), which com-
pletely fix the drifting problem encountered on hard edges. The
comparison is made on a database of canonical geometrical shapes
and industrial models (see supplemental materials for images). It
includes a selection of failure cases for each algorithm: objects of
revolution(p1, p6, p10, p17, p27), object including long cylindrical

shapes (p12, 27), degenerated case for Huang’s boundary condition
(p4, p5), and “traps” for the front propagation initializer (p16, p17,
p20, p21, p23, p26, p27, p29, p34).

4.2 Observations

Our initializer is very fast, easy to implement, and produces fields
that are often equivalent to other methods. There is one exception:
for objects of revolution, our initializer fails to pick a solution in the
infinite set of equivalent solutions. Our method fixes these failure
cases with the non-linear solver. On other models, the non-linear
solver improves the quality a little bit.

Previous works are slower and have failure cases (see below). How-
ever, if we improve them by sampling on vertices instead of sam-
pling on tetrahedra, the nonlinear solver is often able to produce
fields with a quality that is similar to ours (see Figure 6). It just
takes more time to converge from a weak initialization (see Fig-
ure 7).



Figure 6: Visualization of results for model p31 in Table 1. Top:
hexahedra extracted from CubeCover. Bottom: singularity graphs,
with the hex-incompatible parts colored in red. A: our algorithm;
B: Huang’s algorithm; C: Li’s algorithm; D: our initialization
alone; E: our modified version of Huang’s algorithm; F: our mod-
ified version of Li’s algorithm.

Figure 7: The upper row shows the singularity graphs obtained by
Li et al. sampled on vertices after 1 minute (left), after 3 minutes
(middle) and at convergence after 20 minutes (right). The lower
row shows our result at the same time steps.

For dense input tet meshes, even when sampled on vertices, L-
BFGS is unable to reach a good configuration from a weak ini-
tialization. Such cases are illustrated in Figure 8 with failure cases
of the initialization for each algorithm.

Huang et al.’s original method suffers from the boundary condi-
tion that is only partially enforced during the initialization step. It
can lead to dramatic consequences, as illustrated on some simple
shapes (Fig. 9), where a constant field perfectly satisfies their in-
complete boundary condition whereas it does not match the bound-
ary. One can notice that, in such cases, the harmonic function is

Figure 8: Importance of the initialization for high-resolution input
meshes. Even when sampled on vertices, the nonlinear solver fails
to find a good singularity graph from a poor-quality initial field. We
used the following initializations: A: improved Huang’s method ap-
plied to a tetrahedron model (865K tets), B: improved Li’s method
applied to a higher resolution version of object p26 (2639K tets),
C: our initialization on an object of revolution — ellipsoid (2713K
tets), D: Li’s method on the same ellipsoid.

Figure 9: Typical failure cases of Huang’s method are objects
where a constant field of SH functions respects all boundary condi-
tions of the model.

also very far from being valid.

For less specific objects, results presented in their article are all
”polycube like”. We preferred to test their algorithm with a higher
penalty term associated to the boundary condition: it produces more
interesting fields, but also introduces new failure cases as illustrated
in Figure 10.

The improved version of their method samples the field on vertices
and introduces locked frames that avoid drifting on hard edges. It
is therefore very similar to our algorithm.

Fields generated by Li et al.’s original algorithm match the bound-
ary, however they are likely to have a singularity graph that is in-
compatible with hexahedral remeshing. When their initialization is
too much distorted across the medial axis of the object, the nonlin-
ear smoother is not always able to find a good quality singularity



Figure 10: Impact of penalty term for Huang’s normal constraint:
high value (left) avoids ”polycube like” fields (right), but intro-
duces degenerate cases (sphere).

Figure 11: Typical failure cases of Li’s method are object with high
field discontinuities across the medial axis.

graph (Fig. 11). The modified version sampled on vertices is better
but the lower quality of the initialization makes the whole algorithm
slower than ours (Fig. 7).

Conclusion

In this paper, we draw a bridge between existing 2D and 3D frame
field generation algorithms, and use it to extend some 2D frame
field design algorithms to 3D. As a practical consequence, the ob-
tained algorithm computes a better initial solution than previous
work in 3D, and can be easily extended with additional constraints
and/or internal boundary conditions. The initial solution computed
by our algorithm (i.e. without the smoothing step) can be sufficient
for some applications and has a virtue of being simple to imple-
ment: it requires only a sparse linear system solver.

The smoothness of this initial field can be further improved by
a modification of [Li et al. 2012] that samples the field on ver-
tices. The discretization on vertices that we propose makes L-BFGS
much more efficient than in the original version of [Li et al. 2012]
where the field was sampled on tetrahedra. With this approach we
are able to generate (on a laptop) 3D frame fields on models with
up to several millions tetrahedra in a matter of minutes.

To ease the reproducibility of our results, extensive explanations
with all the derivations and algorithms are provided in the supple-
mental material.
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