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A NUMERICAL ALGORITHM FOR

L2 SEMI-DISCRETE OPTIMAL TRANSPORT IN 3D

Bruno Lévy1

Abstract. This paper introduces a numerical algorithm to compute the L2 optimal transport map
between two measures µ and ν, where µ derives from a density ρ defined as a piecewise linear function
(supported by a tetrahedral mesh), and where ν is a sum of Dirac masses.

I first give an elementary presentation of some known results on optimal transport and then observe
a relation with another problem (optimal sampling). This relation gives simple arguments to study the
objective functions that characterize both problems.

I then propose a practical algorithm to compute the optimal transport map between a piecewise
linear density and a sum of Dirac masses in 3D. In this semi-discrete setting, Aurenhammer et.al [8th
Symposium on Computational Geometry conf. proc., ACM (1992)] showed that the optimal transport
map is determined by the weights of a power diagram. The optimal weights are computed by minimizing
a convex objective function with a quasi-Newton method. To evaluate the value and gradient of this
objective function, I propose an efficient and robust algorithm, that computes at each iteration the
intersection between a power diagram and the tetrahedral mesh that defines the measure µ.

The numerical algorithm is experimented and evaluated on several datasets, with up to hundred
thousands tetrahedra and one million Dirac masses.

Résumé. Cet article décrit un algorithme numérique pour calculer l’application de transport optimal
L2 entre deux mesures µ et ν, où µ dérive d’une densité ρ linéaire par morceaux (supportée par un
maillage tétraédrique), et où ν est une somme de masses de Dirac.

Je donne tout d’abord une présentation élémentaire de quelques résultats connus sur le transport op-
timal, et observe ensuite une relation avec un autre problème (l’échantillonage optimal). Cette relation
fournit des arguments simples pour étudier les fonctions objectifs caractérisant les deux problèmes.

Je propose ensuite un algorithme pratique pour calculer le transport optimal entre une densité
linéaire par morceaux et une somme de masses de Dirac en 3D. Dans ce cas semi-discret, Auren-
hammer et.al [8th Symposium on Computational Geometry conf. proc., ACM (1992)] ont montré que
l’application de transport optimal est déterminée par les poids d’un diagramme de puissance. Les
poids optimaux sont calculés en minimisant une fonction objectif convexe à l’aide d’une méthode
quasi-Newton. Pour évaluer cette fonction objectif et son gradient, je propose un algorithme efficace
et robuste, qui calcule à chaque itération l’intersection entre un diagramme de puissance et le maillage
tétrahédrique qui définit la mesure µ.

L’algorithme numérique est expérimenté et évalué sur plusieurs jeux de données, comportant jusqu’à
plusieurs centaines de milliers de tétraèdres et un million de masses de Dirac.

1991 Mathematics Subject Classification. 49M15, 35J96, 65D18.

04/01/2014.

Keywords and phrases: optimal transport, power diagrams, quantization noise power, Lloyd relaxation

1 Inria Nancy Grand-Est and LORIA, rue du Jardin Botanique, 54500 Vandoeuvre, France

c© EDP Sciences, SMAI 1999



2

Introduction

Optimal Transportation, initially studied by Monge [30], is a very general problem formulation that can be
used as a model for a wide range of applications domains. In particular, it is a natural formulation for several
fundamental questions in Computer Graphics [7, 26,27]

This article proposes a practical algorithm to compute the optimal transport map between two measures
µ and ν, where µ derives from a density ρ defined as a piecewise linear function (supported by a tetrahedral
mesh), and where ν is a sum of Dirac masses. Possible applications comprise measuring the (approximated)
Wasserstein distance between two shapes and deforming a 3D shape onto another one (3D morphing).

I first review some known results about optimal transport in Section 1, its relation with power diagrams [4,27]
in Section 1.4 and observe some connections with another problem (optimal sampling [13, 24]). The structure
of the objective function minimized by both problems is very similar, this allows reusing known results for
both functions. This gives a simple argument to easily compute the gradient of the quantization noise power
minimized by optimal sampling, and this gives the second order continuity of the objective function minimized
in semi-discrete optimal transport (see Section 1.6).

I then propose a practical algorithm to compute the optimal transport map between a piecewise linear density
and a sum of Dirac masses in 3D (Section 2). This means determining the weights of a power diagram, obtained
as the unique minimizer of a convex function [4]. Following the approach in [27], to optimize this function, I use
a quasi-Newton solver combined with a multilevel algorithm. Adapting the approach to the 3D setting requires
an efficient method to compute the intersection between a power diagram and the tetrahedral mesh that defines
the density µ.

To compute these intersections, the algorithm presented here simultaneously traverses the tetrahedral mesh
and the power diagram (Section 2.1). The required geometric predicates are implemented in both standard
floating point precision and arbitrary precision, using arithmetic filtering [28], expansion arithmetics [36] and
symbolic perturbation [15]. Both predicates and power diagram construction algorithm are available in PCK
(Predicate Construction Kit) part of my publically available “GEOGRAM” programming library1.

The algorithm was experimented and evaluated on several datasets (Section 3).

1. Optimal Transport: an Elementary Introduction

This section, inspired by [37], [35], [10] and [1], presents an introduction to optimal transport. It stays at an
elementary level that corresponds to what I have understood and that keeps computer implementation in mind.

1.1. The initial formulation by Monge

The problem of Optimal Transport was first introduced and studied by Monge [30]. With modern notations,
it can be stated as follows :

(M)
given Ω a Borel set and two measures µ and ν on Ω such that µ(Ω) = ν(Ω),

find T : Ω→ Ω such that

{
(C1) ν = T]µ
(C2)

∫
Ω
c(x, T (x))dµ is minimal

(1)

where c denotes a convex distance function. In the first constraint (C1), T]µ denotes the pushforward of µ
by T , defined by T]µ(X) = µ(T−1(X)) for any Borel (i.e. measurable) subset X of Ω. In other words, the
constraint (C1) means that T should preserve the mass of any measurable subset of Ω. The functional in (C2)
has a non-symmetric structure, that makes it difficult to study the existence for problem (M).

1http://gforge.inria.fr/projects/geogram/
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The non-symmetry comes from the constraint that T should be a map. It makes it possible to merge mass
but not to split mass. This problem occurs whenever the source measure µ has mass concentrated on a d − 1
dimensional manifold [25].

1.2. The relaxation of Kantorovich for Monge’s problem

To overcome this difficulty, Kantorovich proposed a relaxation of problem (M) where mass can be both split
and merged. The idea consists of manipulating measures on Ω× Ω as follows :

(K)
min

{ ∫
Ω×Ω

c(x, y)dγ | γ ∈ Π(µ, ν)

}
where Π(µ, ν) = {γ ∈ P(Ω× Ω) | (P1)]γ = µ ; (P2)]γ = ν}

(2)

where (P1) and (P2) denote the two projections (x, y) ∈ Ω× Ω 7→ x and (x, y) ∈ Ω× Ω 7→ y respectively.
The pushforwards of the two projections (P1)]γ and (P2)]γ are called the marginals of γ. The probability

measures γ in Π(µ, ν), i.e. that have µ and ν as marginals, are called transport plans. Among the transport
plans, those that are in the form (Id× T )]µ correspond to a transport map T :

Observation 1. If (Id× T )]µ ∈ π(µ, ν), then T pushes µ to ν.

Proof. (Id×T )]µ belongs to π(µ, ν), therefore (P2)](Id×T )]µ = ν, or ((P2) ◦ (Id× T )) ]µ = ν, thus T]µ = ν �

With this observation, for transport plans of the form γ = (Id× T )]µ, (K) becomes

min


∫

Ω×Ω

c(x, y)d ((Id× T )]µ)

 = min


∫
Ω

c(x, T (x))dµ


At this point, a standard approach to tackle the existence problem is to find some regularity in both the

functional and space of admissible transport plans, i.e. proving that the functional is smooth enough and
finding a compact set of admissible transport plans. Since the set of admissible transport plans contains at least
the product measure µ ⊗ ν, it is non-empty, and existence can be proved using a topological argument that
exploits the smoothness of the functional and the compactness of the set. Once the existence of a transport plan
is proved, an interesting question is whether there exists a transport map that corresponds to this transport
plan. Unfortunately, problem (K) does not directly exhibit the properties required by this path of reasoning.
However, one can observe that (K) is a linearly constrained optimization problem. This calls for studying the
dual formulation, as done by Kantorovich. This dual formulation has a nice structure, that allows answering
the questions above (existence of a transport plan, and whether there is a transport map that corresponds to
this transport plan when it exists).

1.3. The dual formulation of Kantorovich

The dual formulation can be stated as follows2 :

(D) max


∫
Ω

φdµ+

∫
Ω

ψdν | (C1) φ ∈ L1(µ);ψ ∈ L1(ν);
(C2) φ(x) + ψ(y) ≤ c(x, y)∀(x, y) ∈ Ω× Ω

 (3)

Following the classical image that gives some intuition about this formula, imagine now that you are hiring a
transport company to do the job for you. The company has a special way of calculating the price: the function
φ(x) corresponds to what they charge you for loading at x, and ψ(y) what they charge for unloading at y. The

2Showing the equivalence with problem (K) requires some care, the reader is referred to [37] chapter 5. Note that [37] uses a

slightly different definition (with φ − ψ instead of φ + ψ), that makes the detailed argument simpler but that breaks symmetry
between φ and ψ. Since I stay at an elementary level, I prefer to keep the symmetry.



4 TITLE WILL BE SET BY THE PUBLISHER

company tries to maximize profit (therefore is looking for a max instead of a min), but they cannot charge you
more than what it will cost you if you do the job yourself (C2).

The existence for (D) is difficult to study, since the class of admissible functions that satisfy (C1) and (C2) is
non-compact. However, more structure in the problem can be revealed by referring to the notion of c-transform,
that exhibits a class of admissible functions with regularity :

Definition 1. Given a function X : Ω→ R̄, the c-transform X c is defined by :

X c := inf
x∈Ω

c(x, y)−X (x)

• If for a function φ there exists a function X such that φ = X c, then φ is said to be c-concave;
• Ψc(Ω) denotes the set of c-concave functions on Ω.

It is now possible to make two observations, that allow us to restrict ourselves to the class of c-concave
functions for the possible choices for φ and ψ :

Observation 2. If (φ, ψ) is admissible for (D), then (φ, φc) is also admissible.

Proof. {
∀(x, y) ∈ Ω× Ω, φ(x) + ψ(y) ≤ c(x, y)
φc(y) = inf

x∈Ω
c(x, y)− φ(x)

φ(x) + φc(y) = φ(x) + infx′∈Ω (c(x′, y)− φ(x′))
≤ φ(x) + c(x, y)− φ(x)
≤ c(x, y)

�

Observation 3. If (φ, ψ) is admissible for (D), then a better candidate can be found by replacing ψ with φc :

Proof. {
φc(y) = inf

y∈Ω
c(x, y)− φ(x)

∀x ∈ Ω, ψ(y) ≤ c(x, y)− φ(x)
⇒ ψ(y) ≤ φc(y)

�

Therefore, we have min(K) = max
ψ∈Ψc(Ω)

∫
Ω

ψdµ+
∫
Ω

ψcdν

I will not detail here the proof for the existence, the reader is referred to [37], Chapter 4. The idea is that we
are now in a much better situation, since the class of admissible functions Ψc(Ω) is compact (provided that we
fix the value of Ψ at one point of Ω to remove the translational invariance degree of freedom of the problem).

Since we have computer implementation in mind, our goal is to find a numerical algorithm to compute an
optimal transport map T . At first sight, though the values of the functionals match at a solution of (K) and
(D), it seems to be difficult to deduce T from a solution to the dual problem (D). However, there is a nice
relation between the dual problem (D) and the initial Monge’s problem (M), detailed in [37], chapters 9 and
10. The main result characterizes the pairs of points (x, y) that are connected by the transport plan :

Theorem 1.
∀(x, y) ∈ ∂cψ,∇ψ(x)−∇xc(x, y) = 0

where ∂cψ = {(x, y)|φ(x) + ψ(y) = c(x, y)} denotes the so-called c-subdifferential of ψ.

Proof. See [37] chapter 10.
I summarize the heuristic argument given at the beginning of the same chapter, that gives some intuition :
Consider a point (x, y) on the c-subdifferential ∂cψ, that satisfies φ(y) + ψ(x) = c(x, y) (1).
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By definition, φ(y) = ψc(y) = inf
x
c(x, y)− ψ(x), thus ∀x̃, φ(y) ≤ c(x̃, y)− ψ(x̃), or φ(y) + ψ(x̃) ≤ c(x̃, y) (2).

By substituting (1) into (2), one gets ψ(x̃)− ψ(x) ≤ c(x̃, y)− c(x, y) for all x̃.
Imagine now that x̃ follows a trajectory parameterized by ε and starting at x. One can compute the gradient

along an arbitrary direction w by taking the limit when ε tends to zero in the relation ψ(x̃)−ψ(x)
ε ≤ c(x̃,y)−c(x,y)

ε .
Thus we have ∇ψ(x) ·w ≤ ∇xc(x, y) ·w. The same derivation can be done with −w instead of w, and one gets:
∀w,∇ψ(x) · w = ∇xc(x, y) · w, thus ∀(x, y) ∈ ∂cψ,∇ψ(x)−∇xc(x, y) = 0.
Note: the derivations above are only formal ones and do not make a proof. The proof requires a much more
careful analysis, using generalized definitions of differentiability and tools from convex analysis. �

In the L2 case, i.e. c(x, y) = 1/2‖x − y‖2, we have ∀(x, y) ∈ ∂cψ,∇ψ(x) + y − x = 0, thus, whenever the
optimal transport map T exists, we have T (x) = x − ∇ψ(x) = ∇(‖x‖2/2 − ψ(x)). Not only this gives an
expression of T , but also it allows characterizing T as the gradient of a convex function, which is an interesting
property since it implies that two “transported particles” x1 7→ T (x1) and x2 7→ T (x2) cannot collide, as shown
below :

Observation 4. If c(x, y) = 1/2‖x− y‖2 and ψ ∈ Ψc(Ω), then ψ̄ : x 7→ ψ̄(x) = ‖x‖2/2− ψ(x) is convex (it is
an equivalence if Ω = Rd).

Proof.

ψ(x) = inf
y

|x−y|2
2 − φ(y)

= inf
y

‖x‖2
2 − x · y + ‖y‖2

2 − φ(y)

−ψ̄(x) = φ(x)− ‖x‖
2

2 = inf
y
−x · y +

(
‖y‖2

2 − φ(y)
)

ψ̄(x) = sup
y
x · y −

(
‖y‖2

2 − φ(y)
)

The function x 7→ x · y−
(
‖y‖2

2 − φ(y)
)

is linear in x, therefore the graph of ψ̄ is the upper envelope of a family

of hyperplanes, thus ψ̄ is convex. �

Observation 5. Consider the trajectories of two particles parameterized by t ∈ [0, 1], t 7→ (1 − t)x1 + tT (x1)
and t 7→ (1− t)x2 + tT (x2). If x1 6= x2 and for 0 < t < 1 the particles cannot collide.

Proof. By contradiction, suppose that you have t ∈ (0, 1) and x1 6= x2 such that:

(1− t)x1 + tT (x1) = (1− t)x2 + tT (x2)
(1− t)x1 + t∇ψ̄(x1) = (1− t)x2 + t∇ψ̄(x2)
(1− t)(x1 − x2) + t(∇ψ̄(x1)−∇ψ̄(x2)) = 0
∀v, (1− t)v · (x1 − x2) + tv · (∇ψ̄(x1)−∇ψ̄(x2)) = 0
take v = (x1 − x2)

(1− t)‖x1 − x2‖2 + t(x1 − x2) · (∇ψ̄(x1)−∇ψ̄(x2)) = 0

which is a contradiction since this quantity is the sum of two strictly positive numbers ( recalling the definition
of the convexity of ψ̄: ∀x1 6= x2, (x1 − x2) · (∇ψ̄(x1)−∇ψ̄(x2)) > 0 ).

�

At this point, we know that when the optimal transport map exists, it can be deduced from the function ψ
using the relation T (x) = ∇ψ̄ = x−∇ψ. We now consider some ways of finding the function ψ.

The classical change of variable formula gives:

∀B,
∫
B

µ(x)dµ = µ(B) = ν(T (B)) =

∫
B

|det JT (x)|T (x)dν (4)

where JT denotes the Jacobian matrix of T .
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If µ and ν both have a density u and v (i.e. ∀B,µ(B) =
∫
B
u(x)dx and ν(B) =

∫
B
v(x)dx), then one can

(formally) consider (4) in a pointwise manner :

∀x ∈ Ω, u(x) = |det JT (x)| v(T (x)) ; (5)

injecting T = ∇ψ̄ and JT = Hψ̄ in (5) gives:

∀x ∈ Ω, u(x) =
∣∣detHψ̄(x)

∣∣ v(∇ψ̄(x)) (6)

where Hψ̄ denotes the Hessian of ψ̄. Equation 6 is known as the Monge-Ampère equation. It is a highly
non-linear equation, and its solution when it exists often has singularities. It is similar to the eikonal equation
that characterizes the distance function and that has a singularity on the medial axis. Note that the derivations
above are only formal, studying the solutions of the Monge-Ampère equation requires using more elaborate
tools, and several types of weak solutions can be defined (viscosity solutions, solutions in the sense of Brenier,
. . . ).

Still keeping computer implementation in mind, one may consider three different problem settings :

• continuous: if µ and ν have a density u and v, it is possible to numerically solve the Monge-Ampère
equation, as done in [5] and [34];

• discrete: if both µ and ν are discrete (sums of Dirac masses), then finding the optimal transport
plan becomes an assignment problem, that can be solved with some variants of linear programming
techniques (see the survey in [9]);

• semi-discrete: if µ has a density and ν is discrete (sum of Dirac masses), then an optimal transport
map exists. It has interesting connections with notions of computational geometry. The remainder of
this paper considers this problem setting.

1.4. The semi-discrete case

I now consider that µ has a density u, and that ν =
∑k
i=1 νiδpi is a sum of k Dirac masses, that satisfies

ν(Ω) =
∑k
i=1 νi = µ(Ω). Whenever T exists, the pre-images of the Dirac masses T−1(pi) partition Ω up to a

negligible set (the common boundaries of the parts). This subsection reviews the main results in [4], showing
that this partition corresponds to a geometrical structure called a power diagram. Note that the same result
can be obtained as a direct consequence of Brenier’s polar factorization theorem [8]. However, the arguments
in [4] can be used to define a practical numerical algorithm, as experimented in 2D in [27] and in 3D further in
this paper.

Definition 2. Given a set P of k points pi in Rd and a set W of k real numbers wi, the Voronoi diagram
Vor(P ) and the power diagram PowW (P ) are defined as follows :

• The Voronoi diagram Vor(P ) is the partition of Rd into the subsets Vor(pi) defined by :
Vor(pi) := {x|‖x− pi‖2 < ‖x− pj‖2 ∀j 6= i};

• the power diagram PowW (P ) is the partition of Rd into the subsets PowW (pi) defined by :
PowW (pi) := {x|‖x− pi‖2 − wi < ‖x− pj‖2 − wj ∀j 6= i};

• the map TW defined by ∀i,∀p ∈ PowW (pi), TW (p) = pi is called the assignment defined by the power
diagram PowW (P ).

It can be shown that the assignment defined by a power diagram is an optimal transport map (the main
argument of the proof is sketched further). Then one needs to determine - when it is possible - the parameters
of this power diagram (i.e. the weights) that realize the optimal transport towards a given discrete target
measure ν. Intuitively, a power diagram may be thought-of as a generalization of the Voronoi diagram, with
additional “tuning buttons” represented by the weights wi. Changing the weight wi associated with a point pi
influences the area and the measure µ(PowW (pi)) of its power cell (the higher the weight, the larger the power
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cell). Though the relation between the weights and the measures of the power cells is non-trivial3, it is well
behaved, and as shown below, one can prove the existence and uniqueness of a set of weights such that the
measure of each power cell µ(PowW (pi)) matches a prescribed value νi. In this case, the prescribed measures νi
are referred to as capacity constraints, and the power diagram is said to be adapted to the capacity constraints.
At this point, since we already know that the assignment defined by a power diagram is an optimal transport
map, then we are done (i.e. the assignment defined by the power diagram is the optimal transport map that
we are looking for). I shall now give more details about the proofs of the two parts of the reasoning.

Figure 1. Illustration of the (by-
contradiction) argument that the
common boundary between the pre-
images of pi and pj is contained by
a straight line orthogonal to [pi, pj ].

Figure 2. The weight vector that de-
fines an optimal transport map can be
found as the maximizer of a convex
function, defined as the lower envelope
of a family of linear functions.

Theorem 2. Given a set of points P and a set of weights W , the assignment TP,W defined by the power diagram
is an optimal transport map.

Proof. I give here the main idea of the proof (see [4] for the complete one). The main argument is that if T is an
optimal transport map, then the common boundary of the pre-images T−1(pi) and T−1(pj) of two Dirac masses
is a straight line orthogonal to the segment [pi, pj ]. The argument, obtained by contradiction, is illustrated in
Figure 1. Suppose that the common boundary between the pre-images T−1(pi) and T−1(pj) is not a straight
line (thick curve in the figure), then one can find a straight line orthogonal to the segment [pi, pj ] that has an
intersection with the common boundary (dashed line in the figure), and two points qi and qj located as shown
in the figure. Then, it is clear (by the Pythagorean theorem) that re-assigning qj to T−1(pi) and qi to T−1(pj)
lowers the transport cost, which contradicts the initial assumption. It is then possible to establish that the
pre-images correspond to power cells, by invoking some properties of power diagrams [3]. �

Theorem 3. Given a measure µ with density, a set of points (pi) and prescribed masses νi such that
∑
νi =

µ(Ω), there exists a weights vector W such that µ(PowW (pi)) = νi.

Proof. Consider the function fT (W ) =
∫

Ω
‖x−T (x)‖2−wT (x)dµ, where T : Ω→ P is an arbitrary assignment.

One can observe that:

• If the assignment T is fixed, fT (W ) =
∫

Ω
‖x− T (x)‖2dµ−

∑k
i=1 wiµ(T−1(pi)) is affine in W . In Figure

2, the graph of fT (W ) for a fixed assignment T corresponds to one of the straight lines (note that in
the figure, the “W axis” symbolizes k coordinates);

• we now consider a fixed value of W and different assignments T . Among all the possible T ’s, it is clear
that fT (W ) is minimized by TW , the assignment defined by the power diagram with weights W (the
definition of the power cell minimizes at each point of Ω the integrand in the equation of fT (W )).

3Misleadingly, the term ’weight’ seems similar to ’mass’, but both notions are not directly related.
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Now take T = TW in fT (W ), in other words, consider the function fTW
(W ). Its graph, depicted as a dashed

curve in Figure 2, is the lower envelope of a family of hyperplanes, thus it is a concave function, with a single
maximum. For the next steps of the proof, we now need to compute the gradient ∇W fTW

(W ). Note that when
computing the variations of fTW

(W ), both the argument W of f and the parameter TW change, making the
computations quite involved. When TW changes, the power cells change, and one needs to compute integrals over
varying domains. However, it is possible to drastically simplify computations by using the envelope theorem [29]:
Given a parameterized family of functions fT (W ) (in our case, the parameter is T ), whenever the gradient of
∇W fTW

(W ) exists, it is equal to the gradient ∇W fT∗(W ) computed at the minimizer T ∗ (fTW
in our case) 4.

In other words, when computing the gradients, one can directly use the expression of fT (W ) and ignore the
variations of T in function of W . In Figure 2, it means that the tangent to fTW

at W corresponds to the (linear)
graph of fT (W ) with a fixed T = TW . Note that in our case, the so-called choice set, i.e. where T is chosen, is
the set of all the assignments between Ω and P . This requires a special version of the envelope theorem that
works for such a general choice sets [29].

One can see that the components of the gradient correspond to the (negated) measures of the power cells :

∂fTW
(W )

∂wi
= ∇W


∫

Ω

‖x− T (x)‖2dµ︸ ︷︷ ︸
constant(W )

−
k∑
i=1

wiµ(T−1
W (pi))


= −µ(T−1

W (pi)) = −µ(PowW (pi))

We are now in a very good situation to establish the existence and uniqueness of the weight vector W that
realizes the optimal transport map. The idea is to use fTW

to construct a function g that has a global maximum
realized at a weight vector such that the measures of the power cells match the prescribed measures. Consider
the function g defined by g(W ) = fTW

(W ) +
∑
i νiwi. The components of the gradient of g are given by

∂g/∂wi = −µ(PowW (pi)) + νi. This function is also concave (it is the sum of a concave function plus a linear
one), therefore it has a unique global maximum where the gradient is zero. Therefore, at the maximum of g,
for each power cell, the measure µ(PowW (pi)) matches the prescribed measure νi. �

Besides showing the existence of a semi-discrete transport map and characterizing it as the assignment
defined by a power diagram, the proof in Theorem 3 directly leads to a numerical algorithm, as shown in [27],
described in Section 2 further. A similar algorithm can be obtained by starting from a discrete version of the
Monge-Ampere equation and the characterization of T as the gradient of a piecewise linear convex function [16].

1.5. Relation with Kantorovich’s dual formulation

It is interesting to see the relation between the proof of Aurenhammer et.al that does not use the formalism
of optimal transport, and the dual formulation of optimal transport. Interestingly, one can remark that the
same argument (lower envelope of hyperplanes) is used to establish the concavity of fTW

in Theorem 3 and the
convexity of ψ̄ in Observation 4. The relation between both formulations can be further explained if we link
the Kantorovich potential φ and the weights wi with the relation φ(yi) = 1/2wi. For instance, injecting φ(yi) =
1/2wi and c(x, y) = 1/2‖x − y‖2 into ψ(x) = φc(x) = infy c(x, y) − φ(y) gives ψ(x) = 1/2 infi ‖x − yi‖2 − wi.
This corresponds to the definition of the power cells (intuitively, the inf in the definition of φc is the same as
the inf in the definition of the power cell). Now consider T (x) = x−∇ψ(x). Still using the expression of ψ(x)
above, we get T (x) = x− 1/2∇x(‖x− yi‖2 − wi) = yi. This connects the characterization of T as the solution
of ∇φ(x) −∇xc(x, y) = 0 (Theorem 1) with the characterization of T as the assignment defined by the power
diagram (Theorem 3). This corresponds to the point of view developed in [16].

4In terms of convex analysis, the same result can also be obtained by considering properties of the subgradient
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Figure 3. Left: random points
(black), Voronoi diagram and cell cen-
troids (gray); Right: a centroidal
Voronoi diagram.

Figure 4. The quantization noise
power Q minimized in vector quanti-
zation is the lower envelope of a family
of quadratic functions QT .

1.6. Relation with optimal sampling

In this section, I exhibit some relations between semi-discrete optimal transport and another problem referred
to as optimal sampling (or vector quantization). Given a compact set Ω ⊂ Rd, a measure µ with a density, and
a set of k points Y in Rd, the quantization noise power of Y is defined as :

Q(Y ) :=

∫
Ω

min
i
‖x− yi‖2dµ =

k∑
i=1

∫
Vor(yi)∩Ω

‖x− yi‖2dµ (7)

The quantization noise power measures how good Y is at “sampling” Ω (the smaller, the better), see the
survey in [13]. The vector quantization problem consists in minimizing Q(Y ) (i.e. finding the poinset Y that
best samples Ω). This notion comes from signal processing theory, and was used to find the optimal assignment
of frequency bands for multiplexing communications in a single channel [24]. Designing a numerical algorithm
that optimizes Q requires to evaluate the gradient of Q. This requires computing integrals over varying domains
(since the Voronoi cells of the yi’s depend on the yi’s), which requires several pages of careful derivations, as
done in [13, 17]. At the end, most of the terms cancel-out, leaving a simple formula (see below). One can note
the similarity between the quantization noise power (Equation 7) and the objective function maximized by the
weight vector in semi-discrete optimal transport (proof of Theorem 3). This suggests using the same type of
argument (envelope theorem) to directly obtain the gradient of Q :

Observation 6. The function Q is of class C1 (in general it is smoother, see Theorem 4 below) and the
components of its gradient relative to one of the point yi are given by:

∇yiQ(Y ) = 2mi(yi − gi)

where mi = µ(Vor(yi)) =
∫
Vor(yi)

dµ denotes the mass of the Voronoi cell Vor(yi) and gi = 1/mi

∫
Vor(yi)

xdµ

denotes the centroid of the Voronoi cell Vor(yi).

Proof. Consider the function QT (Y ) :=
∫

Ω
‖x−T (x)‖2dµ, parameterized by an assignment T : Ω→ Y . We are

in a setting similar to semi-discrete optimal transport (Section 1.4), except that the function QT (Y ) is quadratic
(see Figure 4), whereas FT (W ) is linear (Figure 2). We have :

• Q(Y ) = QTVor
(Y );

• for a given Y , TVor is the unique affectation that minimizes QT (Y ).
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Figure 5. Combinatorial change in a Voronoi diagram.

By the envelope theorem [29], we have:

∇Q(Y ) = ∇QTVor
(Y ) = ∇

∑
i

∫
Vor(yi)

(x2 − 2x · yi + y2
i )dµ

=
∑
i

∇ ∫
Vor(yi)

x2dµ− 2∇
∫

Vor(yi)

x · yidµ+∇
∫

Vor(yi)

y2
i dµ


∇yiQ(y) = −2yi

∫
Vor(yi)

xdµ+ 2yi
∫

Vor(yi)

dµ

= −2migi + 2miyi = 2mi(yi − gi)

�

This directly gives the expression of the gradient of Q and explains why most of the terms cancel out in the
derivations conducted in [17]. I mention that the same result can be obtained in a more general setting with
Reynold’s transport theorem [33] (that deals with functions integrated over varying domains).

The regularity of the quantization noise power Q can be further characterized [23]:

Theorem 4. Given a measure µ with a C2 density u supported by a compact set Ω ⊂ Rd, the quantization
noise power Q(Y ) =

∑
i

∫
Vor(i)

‖x − yi‖2u(x)dx is of class C2 whenever the points Y are in generic position

and C1 otherwise. The points are in generic position iff for each pair of points (yi, yj), j 6= i we have :

• yj 6= yi;
• the intersection Π(i, j) ∩ ∂Ω between the bisector Π(i, j) = {x|d(x, yi) = d(x, yj)} and the boundary of

Ω is of dimension at most d− 2).

Proof. The main argument of the proof in [23] can be summarized as follows : the expression of Q(Y ) depends
on the combinatorics of the Voronoi diagram of the points Y . Over subsets where the combinatorics is constant,
Q is a rational fraction, of class C∞. Therefore, to study the regularity of Q, one only needs to examine
the configurations of Y that correspond to combinatorial changes. Figure 5 shows an example of such a
combinatorial change, that occurs when the points p1 and p2 cross the circle C. A combinatorial change occurs
whenever Y is in degenerate configuration, with at least one set of at least d + 1 co-spherical points (Figure
5-B). In such a configuration, the Delaunay triangulation of the points is non-unique, and each possibility
yields a different expression of Q. In the example shown in Figure 5-A, there are two expressions of Q, that
correspond to the combinatorics shown in Figure 5-A and 5-C. Analyzing the smoothness of Q means proving
that these expressions have C2 contact at the degenerate configuration. It can be done by considering their
Taylor expansions, and showing that they match up to the second order term. �
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The smoothness of Q has a practical importance. It suggests using second order methods to optimize Q. In
addition, we conjecture that this result still holds when u is C0, as suggested by our empirical studies in [23].
However, to compute the second order derivatives, the envelope argument cannot be used to compute the Hes-
sian of Q, and the structure of the formulas [14, 17, 23] do not suggest that direct computation can be avoided
for them. Note also that Q is the lower envelope of a family of parabola (instead of a family of hyperplanes),
therefore the concavity argument does not hold, and the graph of Q has many local minima (as depicted in
Figure 4). The local minima of Q, i.e. the point sets Y such that ∇Q = 0, satisfy ∀i, yi = gi, in other words,
the position at each point yi corresponds to the centroids of the Voronoi cell associated with yi. For this reason,
a stationary point of Q is called a centroidal Voronoi tessellation. To compute a centroidal Voronoi tessellation,
it is possible to iteratively move each point towards the centroid of its Voronoi cell (Lloyd relaxation [24]),
which is equivalent to minimizing Q with a gradient descent method [13]. It is also possible to minimize Q with
Newton-type methods [23] that show faster convergence.

More relations between semi-discrete optimal transport and vector quantization can be exhibited by consid-
ering a power diagram as the intersection between a d+ 1 Voronoi diagram and Rd :

Observation 7. The d-dimensional power diagram PowW (Y ) corresponds to the intersection between the d+ 1

dimensional Voronoi diagram Vor(Ŷ ) and Rd, where the Rd+1 lifting ŷi of yi is defined by :

ŷi =



yi,1
yi,2
...
yi,d

hi =
√
wM − wi


where yi,j denotes the j-th coordinate of point yi, and where wM denotes the maximum of all weights Max(wi).

Proof.

Vor(ŷi) ∩ Rd = {x | ‖x̂− ŷi‖2 < ‖x̂− ŷj‖2 ∀j 6= i}

=

x |

∥∥∥∥∥
[
x

0

]
−

[
yi√

wM − wi

]∥∥∥∥∥
2

<

∥∥∥∥∥
[
x

0

]
−

[
yj√

wM − wj

]∥∥∥∥∥
2

∀j 6= i


= {x | ‖x− yi‖2 − wi + wM < ‖x− yj‖2 − wj + wM ∀j 6= i}

= {x | ‖x− yi‖2 − wi < ‖x− yj‖2 − wj ∀j 6= i}

= PowW (yi)

�

We can now see a relation between vector quantization and semi-discrete optimal transport. We consider
now the function Q̂(Ŷ ) defined by :

Q̂(Ŷ ) =
∑
i

∫
Vorŷi∩Rd

‖x̂− ŷ‖2dµ

where Ŷ denotes a set of points in Rd+1. The quantity Q̂(Ŷ ) measures the “quality of the sampling” of the

measure µ realized by Ŷ .

Observation 8. The quantization noise power Q̂(Ŷ ) computed in Rd+1 corresponds to the term fTW
(W ) of the

function maximized by the weight vector that defines a semi-discrete optimal transport map plus the constant
wMµ(Ω).
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Proof.

Q̂(Ŷ ) =
∑
i

∫
Vor(ŷi)∩Rd

‖x̂− ŷi‖2dµ

=
∑
i

∫
PowW (yi)

‖x− yi‖2 − wi + wMdµ

= fTW
(W ) + wMµ(Ω)

�

The quantization noise power Q is already known to be of class C2 almost everywhere (Theorem 4). As a
consequence of this observation, since the function fTW

(W ) can be obtained through the change of variable
hi =

√
wM − wi, it is also of class C2 almost everywhere. This gives more justification for using a quasi-Newton

method to find the maximum of g as done in [27] and in this paper (but note that a complete justification would
require to find some bounds on the eigenvalue of the Hessian).

Another consequence of this observation is that given Ω ⊂ Rd, a measure µ with a density u supported by Ω

and a pointset Ŷ in Rd+1, optimizing the quantization noise power Q̂(Ŷ ) =
∑
i

∫
Vorŷi∩Ω

∥∥∥∥[ x
0

]
− ŷi

∥∥∥∥2

u(x)dx

for the first d coordinates of the ŷi’s moves the points yi in a way that optimizes the sampling of (Ω, µ), and
optimizing for the d+1-th coordinate computes the weights of a power diagram that defines an assignment that
transports µ to the points. Interestingly, the first problem has multiple local minima, whereas the second one
admits a global maximum.

2. Numerical Algorithm

I shall now explain how to use the results in Section 1.4 and turn them into an efficient numerical algorithm.
The algorithm is a variation of the one in [27]. Besides generalizing it to the 3d case, I make some observations
that improve the efficiency of the multilevel optimization method.

The input of the algorithm is a measure µ, supported by a simplicial complex M (i.e. an interconnected
set of tetrahedra in 3D), a set Y of k points yi and k masses νi such that

∑
νi = µ(M) where µ(.) is defined

as follows : For a set B ⊂ R3, the measure µ(B) corresponds to the volume of the intersection between the
tetrahedra of M and B. Optionally, M can have a density linearly interpolated from its vertices. In this setting,
the measure of B corresponds to the integral of the linearly interpolated density on the intersection between B
and the tetrahedra of M .

The weight vector that realizes the optimal transport can be obtained by maximizing the function g(W )
using different numerical methods. The single-level version of the algorithm in [27] is outlined in Algorithm 1 :

To facilitate reproducing the results, I give more details about each step of the algorithm: (1): note that
the components of the gradient of g correspond to the difference between the prescribed measures ν and the
measures of the power cells. This gives an interpretation of the norm of the gradient of g, and helps choosing a
reasonable ε threshold. In the experiments below, I used ε = 0.01∗µ(M)/

√
k. (2): the algorithm that computes

the intersection between a power diagram and a tetrahedral mesh is detailed further (Algorithm 2). (3),(4):
once the intersection PowW (Y ) ∩M is computed, the terms g(W ) and ∇g(W ) are obtained by summing the
contributions of each intersection (grayed area in Figure 6). (5): To maximize g, as in [27], I use the L-BFGS
numerical optimization method [21]. An implementation of L-BFGS is available in [22].

2.1. Computing the intersection between a tetrahedral mesh and a power diagram

To adapt the 2d algorithm in [27] to the 3d case, the only required component is a method that computes
the intersection between a tetrahedral mesh and a power diagram (step (2) in Algorithm 1) :
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Data: A tetrahedral mesh M , a set of points Y and masses νi such that µ(M) =
∑
νi

Result: The weight vector W that determines the optimal transport map T from M to
∑
νiδyi

W ← 0
(1) while ‖∇g(W )‖2 < ε do

(2) Compute PowW (Y ) ∩M

(3) Compute g(W ) =
∑
i

∫
PowW (yi)∩M

‖x− yi‖2 − widµ+
∑
i νiwi

(4) Compute ∇g(W ) = −µ(PowW (yi)) + νi
(5) update W with L-BFGS

end

Algorithm 1: Semi-discrete optimal transport (single-level algorithm)

Data: A tetrahedral mesh M , a set of points Y and a weight vector W
Result: The intersection PowW (Y ) ∩M
(1) S: Stack(couple(tet index, point index))
foreach tetrahedron t ∈M do

(2) if t is not marked then
(3) i← i | PowW (yi) ∩ t 6= ∅
(4) Mark(t,i)
(5) Push(S, (t,i))
while S is not empty do

(6) (t,i) ← Pop(S)
(7) P: Convex ← PowW (yi) ∩ t
(8) Accumulate(P)
(9) foreach j neighbor of i in P do

if (t, j) is not marked then
(10) Mark(t, j)
(11) Push(S, (t, j))

end

end

(12) foreach t′ neighbor of t in P do
if (t′, i) is not marked then

(13) Mark(t′, i)
(14) Push(S, (t′, i))

end

end

end

end

end

Algorithm 2: Computing PowW (Y ) ∩M by propagation

The algorithm works by propagating simultaneously over the tetrahedra and the power cells. It traverses
all the couples (t, i) such that the tetrahedron t has a non-empty intersection with the power cell of yi. I give
below more details on the different steps of the algorithm :
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Figure 6. Computing the intersection between a power diagram and a tetrahedral mesh by propagation.

(1): To keep track of the tetrahedra and power cells that remain to be traversed, the algorithm uses a Stack
data structure (e.g., the class std::stack of the Standard Template Library). The Push operation appends a
couple (t, i) to the top of the stack (5), (11), (14), and the Pop operation removes the couple (t, i) from the top
of the stack (6).

(2): The algorithm keeps track of all the couples (t, i) that were already processed, where t denotes a tetra-
hedron index and i a point index. A couple (t, i) that was already visited is said to be “marked”. A tetrahedron
t that has at least a marked couple (t, i) is said to be marked. This can be implemented using a Set data
structure (e.g. std::set). Some more efficient implementations that avoid the time and memory cost of the
Set data structure are also described in [32] and [38].

(3): Propagation is initialized by starting from an arbitrary tetrahedron t and a point yi that has a non-empty
intersection between its power cell and t. I use the point yi that minimizes its power distance ‖yi − .‖2 −wi to
one of the vertices of t.

(7): a tetrahedron t and a power cell PowW yi can be both described as the intersection of half-spaces, as
well as the intersection t ∩ PowW yi. To compute the intersection, I use re-entrant clipping (each half-space is
removed iteratively). I implemented two version of the algorithm, a non-robust one that uses floating point
arithmetics, and a robust one [19], that uses arithmetic filters [28], expansion arithmetics [36] and symbolic
perturbation [15]. Both predicates and power diagram construction algorithm are available in PCK (Predicate
Construction Kit) part of my publicly available “GEOGRAM” programming library5.

(8) the contribution of each intersection P = t ∩ PowW yi is added to g and ∇g. The convex P is illustrated
in the (2d) figure 6 as the grayed area (in 3d, P is a convex polyhedron). The algorithm then propagates to
both neighboring tetrahedra and points.

(9): each portion of a facet of t that remains in P triggers a propagation to a neighboring tetrahedron t′. In
the 2d example of Figure 6, this corresponds to edges e1 and e4 that trigger a propagation to triangles t2 and

5http://gforge.inria.fr/projects/geogram/
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nb masses k 1000 2000 5000 10000 30000 50000 100000
nb iter 146 200 328 529 1240 1103 1102
time (s) 2.8 6.4 21 65 232 568 847

Table 1. Statistics for a simple translation scenario with the single-level algorithm. The
threshold for ‖∇g‖2 is set to ε = 0.01 ∗ µ(M)/

√
k.

t1 respectively.

(12): each facet of P generated by a power cell facet triggers propagation to a neighboring point. In the
2d example of the figure, this corresponds to edges e2 and e3 that trigger propagation to points yj1 and yj2
respectively.

This algorithm is parallelized, by partitioning the mesh M into M1, M2, . . .Mnb cores and by computing in
each thread Mthrd ∩ PowW (Y ).

I conducted a simple experiment, where M is a tessellated sphere with 2026 tetrahedra, and Y a sampling of
the same sphere shifted by a translation vector of three times the radius of the sphere. The statistics in Table
1 obtained with a standard PC6 show that the single-level algorithm does not scale-up well with the number of
points and starts taking a significant time for processing 10K masses and above. This confirms the observation
in [27]. This is because at the initial iteration, all the weights are zero, and the power diagram corresponds to
the Voronoi diagram of the points yi. At this step, only some points yi on the border of the pointset have a
Voronoi cell that “see” the mesh M (i.e. that have a non-empty intersection with it). It takes many iteration
to compute the weights that “shift” the concerned power cells onto M and allow inner points to see M . It
is only once all the points of Y “see” M that the numerical method can capture the trend of g around the
maximum (and then it takes a small number of iterations to the algorithm to balance the weights). Intuitively,
Y is “peeled” only one layer of points at a time. The bad effect on performances is even more important than
in [27], because in the 3d setting, the proportion of “inner” points relative to the number of points on the border
of the pointset is larger than in 2d.

2.2. Multi-level algorithm

To improve performances, I follow the approach in [27], that uses a multilevel algorithm. The idea consists
in “bootstrapping” the algorithm on a coarse sub-sampling of the pointset. The “peeling” effect mentioned in
the previous paragraph is limited since we have a small number of points. Then the algorithm is run with a
larger number of points, using the previously computed weights as an initialization. The set of points can be
decomposed into multiple level of increasing resolution. The complete algorithm is detailed below :

In my implementation, for step (1), the ratio between the number of points in a level and in the rest of the
points is set to 0.125. For the spatial sort in step (2), the algorithm, available in “GEOGRAM”7, was inspired
by the variant of the Hilbert sort implemented in [12]. (3): Before computing the optimal transport maps,
since the number of points changes at each level, the masses of the points need to be updated. At step (4),
to further improve the speed of convergence, I initialize the the weight of a new point wi using linear least
squares with 10 nearest neighbors for degree 1 and quadratic least squares with 20 nearest neighbors for degree
2 : In Section 1.5, we remarked that the weights wi corresponds to the potential φ evaluated at yi (with a 1/2
factor). For a translation, we know that T−1(y) = y − V = y − ∇φ, therefore φ(y) = V · y where V denotes
the translation vector. In more general settings, φ is still likely to be quite regular (except on its singularities
where T is discontinuous). When initializing a level from the previous one, this suggests initializing the new

6experiments done with a 2.8 GHz Intel Core i7-4900MQ CPU with an implementation of Algorithm 2 that uses 8 threads.
7http://gforge.inria.fr/projects/geogram/
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Data: A tetrahedral mesh M , a set of points Y and masses νi such that µ(M) =
∑
νi

Result: The weight vector W that determines the optimal transport map T from M to
∑
νiδyi

Apply a random permutation to the points Y
(1) Partition the interval of indices [1, k] of Y into nl intervals [bl, el] of increasing size
foreach level l do

(2) Sort the points ybl . . . Yel spatially
(3) For each i, νi ← |M |/el
(4) Interpolate the weights wbl . . . wel from the already computed weights w1 . . . wbl−1

Optimize the weights using Algorithm 1
end

Algorithm 3: Semi-discrete optimal transport (multi-level algorithm)

nb masses 1000 2000 5000 10000 30000 50000 100000
deg. 0 time (s) 2.5 6 19 38 184 356 959
deg. 1 time (s) 1 2 6 14 54 103 172
deg. 2 time (s) 1.4 2.2 6 16 58 138 172
BRIO/deg. 2 time (s) 1 1.65 3.4 9 26 62 106
single level time (s) 2.8 6.4 21 65 232 568 847

Table 2. Statistics for a simple translation scenario with the multi-level algorithm. The mesh
M has 61233 tetrahedra. Timings are in seconds. Each level is initialized from the previous
one with regressions of different degrees.

wi’s from a regression of their nearest neighbors computed at the previous level. Table 2 shows the statistics
for initialization with the nearest neighbor (deg. 0), linear regression with 10 nearest neighbors (deg. 1) and
quadratic regression with 20 nearest neighbors (deg. 2). As can be seen, initializing with linear regression
results in a significant speedup. In this specific case though, quadratic regression does not gain anything. It
is not a big surprise since we know already that φ(y) = V · y is linear in this specific case, but it can slightly
improve performances in more general settings, as shown further.

The influence of the degree of the regression is evaluated in Table 3 for a configuration where a sphere is
splitted into two spheres (first row in Figure 9). Unlike in the previous translation case, in this configuration the
potential φ is non-linear (see the deformations of the spheres), and a higher degree regression slightly improves
the speed of convergence for a large number of points, since it captures more variations of φ and better initializes
W .

Finally, it is possible to gain another x2 speedup factor : the BRIO (Biased Randomized Insertion Order)
algorithm that we use to compute the power diagrams [2] sorts the points with a multilevel spatial reordering
method, that makes it very efficient. In short, BRIO computes a power diagram using a multi-level method. A
coarse power diagram is first created from a randomly chosen subset of the points and then it is refined using
successive levels. It is possible to use the same multilevel spatial ordering for both the numerical optimization
and for computing the power diagrams (the levels used by the multilevel optimal transport computation and by
the multilevel power diagram algorithm are then the same). Statistics are reported in the row (BRIO/deg. 2)
in the table. Since only the weights change during the iterations, this order needs to be computed once only, at
the beginning of the algorithm. Note the overall 8x acceleration factor as compared to the single-level algorithm
in Table 1 (repeated in the last row of Table 2 to ease comparison).
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nb masses 1000 2000 5000 10000 30000 50000 100000
BRIO/deg. 1 time (s) 1 1.7 3.5 9.8 25 61.7 122
BRIO/deg. 2 time (s) 0.9 1.6 3.5 8.4 28.3 61.4 112

Table 3. Statistics for splitting a sphere into two spheres with the multi-level algorithm.
Timings are in seconds. Each level is initialized from the previous one with regressions of
different degrees.

Figure 7. Example of a Delaunay
triangulation restricted to a domain Ω
(thick triangles).

Figure 8. The triangles that do not
appear in both restricted Delaunay
triangulations are discarded (dashed).

2.3. Using semi-discrete transport to approximate the transport between two tetrahedral
meshes

I now consider the case where the input is a pair of tetrahedral meshes M and M ′, with the goal of generating
a sequence of tetrahedral meshes that realize an approximation of the optimal transport between M and M ′.
The algorithm will generate a mesh G with k vertices and a pair of points p0

i and p1
i attached to each vertex.

Transport is parameterized by time t ∈ [0, 1] with pi(t) = (1− t)p0
i + tp1

i . To compute G, we need to determine
the following elements :

(1) the vertices positions (p0
i ) at time t = 0;

(2) the vertices positions (p1
i ) at time t = 1;

(3) the tetrahedra of G. Each tetrahedron connects four vertices (pi, pj , pk, pl)

This requires to introduce the notions of restricted Voronoi diagram and restricted Delaunay triangulation
(as well as their weighted counterparts, restricted power diagram and restricted regular triangulation) :

Definition 3. Given a set P of k points pi in Rd and a set Ω ⊂ Rd, the restricted Voronoi diagram Vor(P )|Ω
and the restricted Delaunay triangulation Del(P )|Ω are defined as follows :

• The restricted Voronoi diagram Vor(P )|Ω is the partition of Ω into the subsets Vor(pi)|Ω defined by :
Vor(pi)|Ω := {x ∈ Ω | ‖x− pi‖2 < ‖x− pj‖2 ∀j 6= i} = Vor(pi) ∩ Ω;

• The restricted Delaunay triangulation Del(P )|Ω is the abstract simplicial set Σ = Σ1∪Σ2∪ . . .Σk where

Σi =
{
{Vor(pj1),Vor(pj2), . . .Vor(pji)} | Vor(pj1) ∩ . . .Vor(pji) 6= ∅

}
; Vor(pi) = Vor(pi) ∪ ∂Vor(pi).

Similarly, one can define the restricted power diagram PowW (P )|Ω and the associated restricted regular trian-
gulation RegW (P )|Ω :

• The restricted power diagram PowW (P )|Ω is the partition of Ω into the subsets PowW (pi)|Ω defined by :
PowW (pi)|Ω := {x ∈ Ω | ‖x− pi‖2 − wi < ‖x− pj‖2 − wj ∀j 6= i} = PowW (pi) ∩ Ω;
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• The restricted regular triangulation RegW (P )|Ω is the abstract simplicial set ΣW = Σ1
W ∪ Σ2

W ∪ . . .ΣkW
where ΣiW =

{
{PowW (pj1),PowW (pj2), . . .PowW (pji)} | PowW (pj1) ∩ . . .PowW (pji) 6= ∅

}
.

An example of restricted Voronoi diagram and restricted Delaunay triangulation is depicted in Figure 7. The
restricted Voronoi diagram corresponds to the partition of Ω (gray area) realized by the Voronoi cells (dashed
lines). The restricted Delaunay triangulation is symbolized by thick triangles. The thin triangles do not belong
to the restricted Delaunay triangulation, because the Voronoi vertices they correspond to do not belong to Ω
(intersections of dashed lines).

Equipped with these notions, we can now find a way of computing the elements that determine G. We start
from a semi-discrete optimal transport computed by the algorithm in the previous section, i.e. a set of k points
Y and a weight vector W , such that the application that maps each restricted power cell PowW (yi)|M to yi is
an optimal transport map. The mesh G will be constructed by connecting the vertices Y with tetrahedra and
determining the original position at time t = 0 of the vertices :

(1) vertices positions (p1
i ) at time t = 1: I use the sampling Y of M ′ (p1

i = yi);
(2) vertices positions (p0

i ) at time t = 0: once the weight vector W is computed, each point yi is back-
mapped to a restricted power cell PowW (yi)|M (that corresponds to the set of points of M transported
to the Dirac mass located at yi). To determine y0

i , I use the centroid of PowW (yi)|M ;
(3) tetrahedra of G: we now imagine that the weight vector W varies over time, and that it is linearly

interpolated between W (0) = W and W (1) = [0 . . . 0]. At time t = 0, the power diagram PowW (0)(Y )
partitions M into power cells (that correspond to the pre-images of the yi’s). At time t = 1, since all the
weights are zero, the power diagram PowW (1)(Y ) corresponds to the Voronoi diagram of the yi’s, that
sample M ′. Therefore, we can define two meshes : RegW (0)(Y )|M and RegW (1)(Y )|M ′ = Del(Y )|M ′ .
Since topology changes may occur between M and M ′, in general, the two meshes RegW (Y )|M and
Del(Y )|M ′ differ. The idea is then to only keep the tetrahedra that remain stable during the trans-
port (i.e., that both appear in RegW (Y )|M and Del(Y )|M ′). Figure 8 shows an example where M is
splitted into two components of M ′. Some triangles (dashed) do not belong to the restricted Delaunay
triangulation of M ′.

The algorithm can be summarized as follows :

Data: Two tetrahedral meshes M and M ′, and k the desired number of vertices in the result
Result: A tetrahedral mesh G with k vertices and a pair of points p0

i and p1
i attached to each vertex.

Transport is parameterized by time t ∈ [0, 1] with pi(t) = (1− t)p0
i + tp1

i .

(1) Sample M ′ with a set Y of k points
(2) Compute the weight vector W that realizes the optimal transport between M and Y (Algorithm 3)
(3) Compute E = Del(Y )|M ′ and F = PowW (Y )|M ; Tets(G) ← E ∩ F
(4) Foreach i ∈ [1 . . . k], (pi)

0 ← centroid(PowW (yi) ∩M) ; (pi)
1 ← yi

Algorithm 4: Approximated optimal transport between two tetrahedral meshes

At step (1), to compute a homogeneous sampling, I initialize Y with a centroidal Voronoi tessellation (see
Section 1.6).
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Figure 9. Some examples of semi-discrete optimal transport with topology changes. The two-
spheres to one-sphere transport (first row) is also shown in cross-section to display the evolution
of the tetrahedral mesh inside the spheres.

nb masses 1000 2000 5000 10000 30000 50000 105 3× 105 5× 105 106

time (s) 1.45 3.2 7.3 17.3 55 154 187 671 1262 2649
Table 4. Statistics for the Armadillo → sphere optimal transport with varying number of
masses (see third row of Figure 10). Timings are given in seconds. The multi-level algorithm
with BRIO pre-ordering and degree 2 regressions is used.

3. Results and conclusions

Several results are shown in Figures 9 and 10. Note that when the volume of M and M ′ differ, using
νi = |M |/k changes the “density” of M ′ and preserves the total mass. The intermediary steps are generated
by using pi = (1− t)p0

i + tp1
i for the locations at the vertices of G. As can be seen, the combinatorial criterion

that selects the stable tetrahedra successfully finds the discontinuities. The third row of Figure 10 demonstrates
some potential applications in computer graphics. In the bottom row, the obtained deformation looks “natural”
and “visually pleasing” (as far as I can judge, but my own judgment may be biased . . . ). However, a “user”
would probably prefer to rotate the star in the center column of Figure 10 rather than splitting and merging the
branches, but optimal transport “does not care” about preserving topology. Results with a spatially varying
density are shown in Figures 11 and 12.
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Figure 10. More examples of semi-discrete optimal transport. Note how the solids deform
and merge to form the sphere on the first row, and how the branches of the star split and merge
on the second row. The Armadillo-to-sphere transport (third row) is shown in cross-section
(fourth row) to display the evolution of the tetrahedral mesh.
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Figure 11. Transport from a uniform density (sampled with 5000 Dirac masses) to a varying
density of 1.0 + x2. The second row shows the mesh evolution in cross-section. Computation
takes 28 seconds, using 3 levels.

Timings for the Armadillo→ sphere optimal transport are given in Table 4. The algorithm scales up reason-
ably well, and computes the optimal transport from a tetrahedral mesh to 300K Dirac masses in 10 minutes.
It scales-up to 1 million Dirac masses (but it nearly takes 45 minutes).

The numerical experiment tend to confirm that this algorithm can be used as a practical way of computing
the Wasserstein distance. It scales up to one million Dirac masses, which is out of reach of discrete combina-
torial algorithms, such as the Hungarian algorithm [31] that operates in O(n3). Note also that the continuous
Benamou-Brenier formulation [5] would require to solve a series of 4d Poisson problems. As suggested in [6],
our algorithm may be used to implement the Jordan-Kinderlehrer-Otto scheme [18] to solve Monge-Ampere
type PDEs. This will require to compute the gradient of the Wasserstein distance, which can be done using
derivations similar to the ones in Section 1.6 and derivatives of Voronoi vertices in [20].

To conclude, I mention that the main limitation of Algorithm 4 is that the discontinuities are sampled at
the precision of the initial sampling, that does not takes them into account. As a consequence, this leaves a
gap that has a width of one tetrahedron in the result. This gap corresponds to the tetrahedra that are not
stable through transport (see Figure 8). One can clearly see this gap in the figures. Moreover, when the shape
undergoes strong deformations, flipping may occur, making the concerned pairs of tetrahedra disappear in the
result (for instance, one can observe some holes in the legs of the armadillo in Figure 10). With a better
representation of discontinuity, one may obtain a more precise representation of the transport. By exploiting
characterization of the singular set where the mapping is discontinuous [11], it may be possible to design a
better algorithm. In our setting, this leads to the following questions :
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Figure 12. Transport from a uniform density (sampled with 20000 Dirac masses) to a varying
density of 2.0 + sin(x) sin(y) sin(z). The second row shows the mesh evolution in cross-section.
Computation takes 102 seconds, using 4 levels.

(1) Given two measures µ and ν supported by tetrahedral meshes M and M ′, is it possible to invent an
algorithm that generates a faithful representation of the singular set ?

(2) What does the singular set looks like if M and M ′ both have a density linearly interpolated over the
tetrahedra ?

(3) What does the singular set looks like if µ and ν are supported by two different set of spheres ?

I wish to thank Nicolas Bonneel for many discussions and for proofreading an early version of this article, Jean-David
Benamou, Quentin Mérigot and Gabriel Peyré for discussions, and the anonymous reviewer for detailed comments and
suggestions that helped improving this article.
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[20] B. Lévy and Y. Liu, Lp centroidal voronoi tesselation and its applications, ACM Transactions on Graphics (SIGGRAPH

conference proceedings), (2010).
[21] D. C. Liu and J. Nocedal, On the limited memory bfgs method for large scale optimization, Math. Program., 45 (1989),

pp. 503–528.

[22] Y. Liu, HLBFGS, a hybrid l-bfgs optimization framework which unifies l-bfgs method, preconditioned l-bfgs method, precondi-
tioned conjugate gradient method. http://research.microsoft.com/en-us/um/people/yangliu/software/HLBFGS/.

[23] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang, On centroidal Voronoi tessellation—energy smoothness

and fast computation, ACM Transactions on Graphics, 28 (2009), pp. 1–17.
[24] S. P. Lloyd, Least squares quantization in pcm, IEEE Transactions on Information Theory, 28 (1982), pp. 129–137.

[25] R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Mathematical Journal, 80 (1995),

pp. 309–323.
[26] F. Mémoli, Gromov-wasserstein distances and the metric approach to object matching, Foundations of Computational Math-

ematics, 11 (2011), pp. 417–487.
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