Graphite Version 3
An experimental 3D geometry processing program
Loading...
Searching...
No Matches
delaunay_3d.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2000-2022 Inria
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * * Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * * Neither the name of the ALICE Project-Team nor the names of its
14 * contributors may be used to endorse or promote products derived from this
15 * software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
21 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Contact: Bruno Levy
30 *
31 * https://www.inria.fr/fr/bruno-levy
32 *
33 * Inria,
34 * Domaine de Voluceau,
35 * 78150 Le Chesnay - Rocquencourt
36 * FRANCE
37 *
38 */
39
40#ifndef GEOGRAM_DELAUNAY_DELAUNAY_3D
41#define GEOGRAM_DELAUNAY_DELAUNAY_3D
42
45#include <geogram/delaunay/cavity.h>
48
49#include <stack>
50
56namespace GEO {
57
107 class GEOGRAM_API Delaunay3d : public Delaunay {
108 public:
122 Delaunay3d(coord_index_t dimension = 3);
123
128 index_t nb_vertices, const double* vertices
129 ) override;
130
134 index_t nearest_vertex(const double* p) const override;
135
136
137 protected:
138
145 static constexpr index_t NO_TETRAHEDRON = index_t(-1);
146
160 index_t& iv0, index_t& iv1, index_t& iv2, index_t& iv3
161 );
162
183 const double* p, index_t hint = NO_TETRAHEDRON,
184 bool thread_safe = false,
185 Sign* orient = nullptr
186 ) const;
187
206 const double* p, index_t hint, index_t max_iter
207 ) const;
208
217 index_t insert(index_t v, index_t hint = NO_TETRAHEDRON);
218
243 index_t v,
244 index_t t, const Sign* orient,
245 index_t& t_bndry, index_t& f_bndry,
246 index_t& first, index_t& last
247 );
248
265 const double* p, index_t t,
266 index_t& t_bndry, index_t& f_bndry,
267 index_t& first, index_t& last
268 );
269
280
281
300 index_t v,
301 index_t t_bndry, index_t f_bndry,
302 index_t prev_f=index_t(-1)
303 );
304
326 index_t t1,
327 index_t t1fborder,
328 index_t t1ft2,
329 index_t& t2,
330 index_t& t2fborder,
331 index_t& t2ft1
332 ) const {
333
334 // Note: this function is a bit long for an inline function,
335 // but I observed a (modest) performance gain doing so.
336
337 // Find two vertices that are both on facets new_f and f1
338 // (the edge around which we are turning)
339 // This uses duality as follows:
340 // Primal form (not used here):
341 // halfedge_facet_[v1][v2] returns a facet that is incident
342 // to both v1 and v2.
343 // Dual form (used here):
344 // halfedge_facet_[f1][f2] returns a vertex that both
345 // f1 and f2 are incident to.
346 signed_index_t ev1 =
347 tet_vertex(t1, index_t(halfedge_facet_[t1ft2][t1fborder]));
348 signed_index_t ev2 =
349 tet_vertex(t1, index_t(halfedge_facet_[t1fborder][t1ft2]));
350
351 // Turn around edge [ev1,ev2] inside the conflict zone
352 // until we reach again the boundary of the conflict zone.
353 // Traversing inside the conflict zone is faster (as compared
354 // to outside) since it traverses a smaller number of tets.
355 index_t cur_t = t1;
356 index_t cur_f = t1ft2;
357 index_t next_t = index_t(tet_adjacent(cur_t,cur_f));
358 while(tet_is_in_list(next_t)) {
359 geo_debug_assert(next_t != t1);
360 cur_t = next_t;
361 cur_f = get_facet_by_halfedge(cur_t,ev1,ev2);
362 next_t = index_t(tet_adjacent(cur_t, cur_f));
363 }
364
365 // At this point, cur_t is in conflict zone and
366 // next_t is outside the conflict zone.
367 index_t f12,f21;
368 get_facets_by_halfedge(next_t, ev1, ev2, f12, f21);
369 t2 = index_t(tet_adjacent(next_t,f21));
370 signed_index_t v_neigh_opposite = tet_vertex(next_t,f12);
371 t2ft1 = find_tet_vertex(t2, v_neigh_opposite);
372 t2fborder = cur_f;
373
374 // Test whether the found neighboring tet was created
375 // (then return true) or is an old tet in conflict
376 // (then return false).
377 return(t2 != cur_t);
378 }
379
380 // _________ Combinatorics - new and delete _________________________
381
389 index_t max_t() const {
390 return cell_to_v_store_.size() / 4;
391 }
392
393
409 static constexpr index_t NOT_IN_LIST = index_t(~0);
410
426 static constexpr index_t NOT_IN_LIST_BIT = index_t(1u << 31);
427
433 static constexpr index_t END_OF_LIST = ~(NOT_IN_LIST_BIT);
434
435
453 bool tet_is_in_list(index_t t) const {
454 geo_debug_assert(t < max_t());
455 return (cell_next_[t] & NOT_IN_LIST_BIT) == 0;
456 }
457
469 geo_debug_assert(t < max_t());
470 geo_debug_assert(tet_is_in_list(t));
471 return cell_next_[t];
472 }
473
484 void add_tet_to_list(index_t t, index_t& first, index_t& last) {
485 geo_debug_assert(t < max_t());
486 geo_debug_assert(!tet_is_in_list(t));
487 if(last == END_OF_LIST) {
488 geo_debug_assert(first == END_OF_LIST);
489 first = last = t;
490 cell_next_[t] = END_OF_LIST;
491 } else {
492 cell_next_[t] = first;
493 first = t;
494 }
495 }
496
507 geo_debug_assert(t < max_t());
508 geo_debug_assert(tet_is_in_list(t));
509 cell_next_[t] = NOT_IN_LIST;
510 }
511
518 static constexpr signed_index_t VERTEX_AT_INFINITY = -1;
519
530 bool tet_is_finite(index_t t) const {
531 return
532 cell_to_v_store_[4 * t] >= 0 &&
533 cell_to_v_store_[4 * t + 1] >= 0 &&
534 cell_to_v_store_[4 * t + 2] >= 0 &&
535 cell_to_v_store_[4 * t + 3] >= 0;
536 }
537
549 bool tet_is_real(index_t t) const {
550 return !tet_is_free(t) && tet_is_finite(t);
551 }
552
562 bool tet_is_virtual(index_t t) const {
563 return
564 !tet_is_free(t) && (
565 cell_to_v_store_[4 * t] == VERTEX_AT_INFINITY ||
566 cell_to_v_store_[4 * t + 1] == VERTEX_AT_INFINITY ||
567 cell_to_v_store_[4 * t + 2] == VERTEX_AT_INFINITY ||
568 cell_to_v_store_[4 * t + 3] == VERTEX_AT_INFINITY) ;
569 }
570
581 bool tet_is_free(index_t t) const {
582 return tet_is_in_list(t);
583 }
584
593 index_t result;
594 if(first_free_ == END_OF_LIST) {
595 cell_to_v_store_.resize(cell_to_v_store_.size() + 4, -1);
596 cell_to_cell_store_.resize(cell_to_cell_store_.size() + 4, -1);
597 // index_t(NOT_IN_LIST) is necessary, else with
598 // NOT_IN_LIST alone the compiler tries to generate a
599 // reference to NOT_IN_LIST resulting in a link error.
600 cell_next_.push_back(index_t(NOT_IN_LIST));
601 result = max_t() - 1;
602 } else {
603 result = first_free_;
604 first_free_ = tet_next(first_free_);
605 remove_tet_from_list(result);
606 }
607
608 cell_to_cell_store_[4 * result] = -1;
609 cell_to_cell_store_[4 * result + 1] = -1;
610 cell_to_cell_store_[4 * result + 2] = -1;
611 cell_to_cell_store_[4 * result + 3] = -1;
612
613 return result;
614 }
615
631 ) {
632 index_t result = new_tetrahedron();
633 cell_to_v_store_[4 * result] = v1;
634 cell_to_v_store_[4 * result + 1] = v2;
635 cell_to_v_store_[4 * result + 2] = v3;
636 cell_to_v_store_[4 * result + 3] = v4;
637 return result;
638 }
639
648 cur_stamp_ = (stamp | NOT_IN_LIST_BIT);
649 }
650
666 bool tet_is_marked(index_t t) const {
667 return cell_next_[t] == cur_stamp_;
668 }
669
684 cell_next_[t] = cur_stamp_;
685 }
686
687 // _________ Combinatorics ___________________________________
688
707 geo_debug_assert(f < 4);
708 geo_debug_assert(v < 3);
709 return index_t(tet_facet_vertex_[f][v]);
710 }
711
720 geo_debug_assert(t < max_t());
721 geo_debug_assert(lv < 4);
722 return cell_to_v_store_[4 * t + lv];
723 }
724
733 geo_debug_assert(t < max_t());
734 // Find local index of v in tetrahedron t vertices.
735 const signed_index_t* T = &(cell_to_v_store_[4 * t]);
736 return find_4(T,v);
737 }
738
739
748 geo_debug_assert(t < max_t());
749 geo_debug_assert(lv < 4);
750 geo_debug_assert(cell_to_v_store_[4 * t + lv] != -1);
751 return index_t(cell_to_v_store_[4 * t + lv]);
752 }
753
761 geo_debug_assert(t < max_t());
762 geo_debug_assert(lv < 4);
763 cell_to_v_store_[4 * t + lv] = v;
764 }
765
773 geo_debug_assert(t < max_t());
774 geo_debug_assert(lf < 4);
775 signed_index_t result = cell_to_cell_store_[4 * t + lf];
776 return result;
777 }
778
787 geo_debug_assert(t1 < max_t());
788 geo_debug_assert(t2 < max_t());
789 geo_debug_assert(lf1 < 4);
790 cell_to_cell_store_[4 * t1 + lf1] = signed_index_t(t2);
791 }
792
802 index_t t1, index_t t2_in
803 ) const {
804 geo_debug_assert(t1 < max_t());
805 geo_debug_assert(t2_in < max_t());
806 geo_debug_assert(t1 != t2_in);
807
808 signed_index_t t2 = signed_index_t(t2_in);
809
810 // Find local index of t2 in tetrahedron t1 adajcent tets.
811 const signed_index_t* T = &(cell_to_cell_store_[4 * t1]);
812 index_t result = find_4(T,t2);
813
814 // Sanity check: make sure that t1 is adjacent to t2
815 // only once!
816 geo_debug_assert(tet_adjacent(t1,(result+1)%4) != t2);
817 geo_debug_assert(tet_adjacent(t1,(result+2)%4) != t2);
818 geo_debug_assert(tet_adjacent(t1,(result+3)%4) != t2);
819 return result;
820 }
821
822
823
838 index_t t,
841 index_t a0, index_t a1, index_t a2, index_t a3
842 ) {
843 geo_debug_assert(t < max_t());
844 cell_to_v_store_[4 * t] = v0;
845 cell_to_v_store_[4 * t + 1] = v1;
846 cell_to_v_store_[4 * t + 2] = v2;
847 cell_to_v_store_[4 * t + 3] = v3;
848 cell_to_cell_store_[4 * t] = signed_index_t(a0);
849 cell_to_cell_store_[4 * t + 1] = signed_index_t(a1);
850 cell_to_cell_store_[4 * t + 2] = signed_index_t(a2);
851 cell_to_cell_store_[4 * t + 3] = signed_index_t(a3);
852 }
853
854 // _________ Combinatorics - traversals ______________________________
855
867 ) const {
868 geo_debug_assert(t < max_t());
869 geo_debug_assert(v1 != v2);
870 // Find local index of v1 and v2 in tetrahedron t
871 const signed_index_t* T = &(cell_to_v_store_[4 * t]);
872 index_t lv1 = find_4(T,v1);
873 index_t lv2 = find_4(T,v2);
874 geo_debug_assert(lv1 != lv2);
875 return index_t(halfedge_facet_[lv1][lv2]);
876 }
877
878
892 index_t& f12, index_t& f21
893 ) const {
894 geo_debug_assert(t < max_t());
895 geo_debug_assert(v1 != v2);
896
897 // Find local index of v1 and v2 in tetrahedron t
898 // The following expression is 10% faster than using
899 // if() statements (multiply by boolean result of test).
900 // Thank to Laurent Alonso for this idea.
901 const signed_index_t* T = &(cell_to_v_store_[4 * t]);
902
903 signed_index_t lv1 =
904 (T[1] == v1) | ((T[2] == v1) * 2) | ((T[3] == v1) * 3);
905
906 signed_index_t lv2 =
907 (T[1] == v2) | ((T[2] == v2) * 2) | ((T[3] == v2) * 3);
908
909 geo_debug_assert(lv1 != 0 || T[0] == v1);
910 geo_debug_assert(lv2 != 0 || T[0] == v2);
911 geo_debug_assert(lv1 >= 0);
912 geo_debug_assert(lv2 >= 0);
913 geo_debug_assert(lv1 != lv2);
914
915 f12 = index_t(halfedge_facet_[lv1][lv2]);
916 f21 = index_t(halfedge_facet_[lv2][lv1]);
917 }
918
919
931 ) const {
932 return (index_t)tet_adjacent(
933 t, get_facet_by_halfedge(t, v1, v2)
934 );
935 }
936
937 // _________ Predicates _____________________________________________
938
952 bool tet_is_conflict(index_t t, const double* p) const {
953
954 // Lookup tetrahedron vertices
955 const double* pv[4];
956 for(index_t i=0; i<4; ++i) {
957 signed_index_t v = tet_vertex(t,i);
958 pv[i] = (v == -1) ? nullptr : vertex_ptr(index_t(v));
959 }
960
961 // Check for virtual tetrahedra (then in_sphere()
962 // is replaced with orient3d())
963 for(index_t lf = 0; lf < 4; ++lf) {
964
965 if(pv[lf] == nullptr) {
966
967 // Facet of a virtual tetrahedron opposite to
968 // infinite vertex corresponds to
969 // the triangle on the convex hull of the points.
970 // Orientation is obtained by replacing vertex lf
971 // with p.
972 pv[lf] = p;
973 Sign sign = PCK::orient_3d(pv[0],pv[1],pv[2],pv[3]);
974
975 if(sign > 0) {
976 return true;
977 }
978
979 if(sign < 0) {
980 return false;
981 }
982
983 // If sign is zero, we check the real tetrahedron
984 // adjacent to the facet on the convex hull.
985 geo_debug_assert(tet_adjacent(t, lf) >= 0);
986 index_t t2 = index_t(tet_adjacent(t, lf));
987 geo_debug_assert(!tet_is_virtual(t2));
988
989 // If t2 is already chained in the conflict list,
990 // then it is conflict
991 if(tet_is_in_list(t2)) {
992 return true;
993 }
994
995 // If t2 is marked, then it is not in conflict.
996 if(tet_is_marked(t2)) {
997 return false;
998 }
999
1000 return tet_is_conflict(t2, p);
1001 }
1002 }
1003
1004 // If the tetrahedron is a finite one, it is in conflict
1005 // if its circumscribed sphere contains the point (this is
1006 // the standard case).
1007
1008 if(weighted_) {
1009 double h0 = heights_[finite_tet_vertex(t, 0)];
1010 double h1 = heights_[finite_tet_vertex(t, 1)];
1011 double h2 = heights_[finite_tet_vertex(t, 2)];
1012 double h3 = heights_[finite_tet_vertex(t, 3)];
1013 index_t pindex = index_t(
1014 (p - vertex_ptr(0)) / int(vertex_stride_)
1015 );
1016 double h = heights_[pindex];
1017 return (PCK::orient_3dlifted_SOS(
1018 pv[0],pv[1],pv[2],pv[3],p,h0,h1,h2,h3,h
1019 ) > 0) ;
1020 }
1021
1022 return (PCK::in_sphere_3d_SOS(pv[0], pv[1], pv[2], pv[3], p) > 0);
1023 }
1024
1025 protected:
1026
1036 // The following expression is 10% faster than using
1037 // if() statements. This uses the C++ norm, that
1038 // ensures that the 'true' boolean value converted to
1039 // an int is always 1. With most compilers, this avoids
1040 // generating branching instructions.
1041 // Thank to Laurent Alonso for this idea.
1042 // Note: Laurent also has this version:
1043 // (T[0] != v)+(T[2]==v)+2*(T[3]==v)
1044 // that avoids a *3 multiply, but it is not faster in
1045 // practice.
1046 index_t result = index_t(
1047 (T[1] == v) | ((T[2] == v) * 2) | ((T[3] == v) * 3)
1048 );
1049 // Sanity check, important if it was T[0], not explicitly
1050 // tested (detects input that does not meet the precondition).
1051 geo_debug_assert(T[result] == v);
1052 return result;
1053 }
1054
1058 ~Delaunay3d() override;
1059
1064 void show_tet(index_t t) const;
1065
1073
1080 index_t first, const std::string& list_name
1081 ) const;
1082
1086 void check_combinatorics(bool verbose = false) const;
1087
1091 void check_geometry(bool verbose = false) const;
1092
1093 private:
1094 vector<signed_index_t> cell_to_v_store_;
1095 vector<signed_index_t> cell_to_cell_store_;
1096 vector<index_t> cell_next_;
1097 vector<index_t> reorder_;
1098 index_t cur_stamp_; // used for marking
1099 index_t first_free_;
1100 bool weighted_;
1101 vector<double> heights_; // only used in weighted mode
1102
1106 bool debug_mode_;
1107
1111 bool verbose_debug_mode_;
1112
1116 bool benchmark_mode_;
1117
1126 static char tet_facet_vertex_[4][3];
1127
1132 static char halfedge_facet_[4][4];
1133
1138 std::stack<index_t> S_;
1139
1145 class StellateConflictStack {
1146 public:
1147
1157 void push(index_t t1, index_t t1fbord, index_t t1fprev) {
1158 store_.resize(store_.size()+1);
1159 top().t1 = t1;
1160 top().t1fbord = Numeric::uint8(t1fbord);
1161 top().t1fprev = Numeric::uint8(t1fprev);
1162 }
1163
1170 void save_locals(index_t new_t, index_t t1ft2, index_t t2ft1) {
1171 geo_debug_assert(!empty());
1172 top().new_t = new_t;
1173 top().t1ft2 = Numeric::uint8(t1ft2);
1174 top().t2ft1 = Numeric::uint8(t2ft1);
1175 }
1176
1186 void get_parameters(
1187 index_t& t1, index_t& t1fbord, index_t& t1fprev
1188 ) const {
1189 geo_debug_assert(!empty());
1190 t1 = top().t1;
1191 t1fbord = index_t(top().t1fbord);
1192 t1fprev = index_t(top().t1fprev);
1193 }
1194
1195
1202 void get_locals(
1203 index_t& new_t, index_t& t1ft2, index_t& t2ft1
1204 ) const {
1205 geo_debug_assert(!empty());
1206 new_t = top().new_t;
1207 t1ft2 = index_t(top().t1ft2);
1208 t2ft1 = index_t(top().t2ft1);
1209 }
1210
1214 void pop() {
1215 geo_debug_assert(!empty());
1216 store_.pop_back();
1217 }
1218
1224 bool empty() const {
1225 return store_.empty();
1226 }
1227
1228 private:
1229
1234 struct Frame {
1235 // Parameters
1236 index_t t1;
1237 index_t new_t;
1238 Numeric::uint8 t1fbord ;
1239
1240 // Local variables
1241 Numeric::uint8 t1fprev ;
1242 Numeric::uint8 t1ft2 ;
1243 Numeric::uint8 t2ft1 ;
1244 };
1245
1252 Frame& top() {
1253 geo_debug_assert(!empty());
1254 return *store_.rbegin();
1255 }
1256
1263 const Frame& top() const {
1264 geo_debug_assert(!empty());
1265 return *store_.rbegin();
1266 }
1267
1268 std::vector<Frame> store_;
1269 };
1270
1275 StellateConflictStack S2_;
1276
1277 Cavity cavity_;
1278 };
1279
1280 /************************************************************************/
1281
1293 class GEOGRAM_API RegularWeightedDelaunay3d : public Delaunay3d {
1294 public:
1305
1306 protected:
1311 };
1312}
1313
1314#endif
#define geo_debug_assert(x)
Verifies that a condition is met.
Definition assert.h:196
Implementation of Delaunay in 3d.
index_t locate_inexact(const double *p, index_t hint, index_t max_iter) const
Finds the tetrahedron that (approximately) contains a point using inexact predicates.
void check_geometry(bool verbose=false) const
For debugging purposes, test some geometrical properties.
void show_tet_adjacent(index_t t, index_t lf) const
For debugging purposes, displays a tetrahedron adjacency.
signed_index_t tet_vertex(index_t t, index_t lv) const
Gets the index of a vertex of a tetrahedron.
void set_tet_adjacent(index_t t1, index_t lf1, index_t t2)
Sets a tetrahedron-to-tetrahedron adjacency.
index_t get_facet_by_halfedge(index_t t, signed_index_t v1, signed_index_t v2) const
bool get_neighbor_along_conflict_zone_border(index_t t1, index_t t1fborder, index_t t1ft2, index_t &t2, index_t &t2fborder, index_t &t2ft1) const
Finds the neighbor of a tetrahedron on the border of the conflict zone.
void set_tet(index_t t, signed_index_t v0, signed_index_t v1, signed_index_t v2, signed_index_t v3, index_t a0, index_t a1, index_t a2, index_t a3)
Sets the vertices and adjacent tetrahedra of a tetrahedron.
index_t next_around_halfedge(index_t &t, signed_index_t v1, signed_index_t v2) const
Gets the next tetrahedron around an oriented edge of a tetrahedron.
void mark_tet(index_t t)
Marks a tetrahedron.
index_t find_tet_adjacent(index_t t1, index_t t2_in) const
Finds the index of the facet accros which t1 is adjacent to t2_in.
static index_t find_4(const signed_index_t *T, signed_index_t v)
Finds the index of an integer in an array of four integers.
index_t nearest_vertex(const double *p) const override
Computes the nearest vertex from a query point.
~Delaunay3d() override
Delaunay3d destructor.
bool tet_is_in_list(index_t t) const
Tests whether a tetrahedron belongs to a linked list.
index_t find_tet_vertex(index_t t, signed_index_t v) const
Finds the index of the vertex in a tetrahedron.
index_t tet_next(index_t t) const
Gets the index of a successor of a tetrahedron.
bool tet_is_finite(index_t t) const
Tests whether a given tetrahedron is a finite one.
void check_combinatorics(bool verbose=false) const
For debugging purposes, tests some combinatorial properties.
bool tet_is_marked(index_t t) const
Tests whether a tetrahedron is marked.
bool tet_is_free(index_t t) const
Tests whether a tetrahedron is in the free list.
bool tet_is_virtual(index_t t) const
Tests whether a tetrahedron is a virtual one.
index_t stellate_conflict_zone_iterative(index_t v, index_t t_bndry, index_t f_bndry, index_t prev_f=index_t(-1))
Creates a star of tetrahedra filling the conflict zone.
index_t insert(index_t v, index_t hint=NO_TETRAHEDRON)
Inserts a point in the triangulation.
void set_tet_mark_stamp(index_t stamp)
Generates a unique stamp for marking tets.
void set_tet_vertex(index_t t, index_t lv, signed_index_t v)
Sets a tetrahedron-to-vertex adjacency.
Delaunay3d(coord_index_t dimension=3)
Constructs a new Delaunay3d.
void set_vertices(index_t nb_vertices, const double *vertices) override
Sets the vertices of this Delaunay, and recomputes the cells.
void remove_tet_from_list(index_t t)
Removes a tetrahedron from the linked list it belongs to.
void add_tet_to_list(index_t t, index_t &first, index_t &last)
Adds a tetrahedron to a linked list.
signed_index_t tet_adjacent(index_t t, index_t lf) const
Gets the index of a tetrahedron adjacent to another one.
void show_tet(index_t t) const
For debugging purposes, displays a tetrahedron.
void find_conflict_zone_iterative(const double *p, index_t t, index_t &t_bndry, index_t &f_bndry, index_t &first, index_t &last)
This function is used to implement find_conflict_zone.
void get_facets_by_halfedge(index_t t, signed_index_t v1, signed_index_t v2, index_t &f12, index_t &f21) const
bool create_first_tetrahedron(index_t &iv0, index_t &iv1, index_t &iv2, index_t &iv3)
Finds in the pointset a set of four non-coplanar points.
void find_conflict_zone(index_t v, index_t t, const Sign *orient, index_t &t_bndry, index_t &f_bndry, index_t &first, index_t &last)
Determines the list of tetrahedra in conflict with a given point.
index_t new_tetrahedron()
Creates a new tetrahedron.
void show_list(index_t first, const std::string &list_name) const
For debugging purposes, displays a tetrahedron.
index_t new_tetrahedron(signed_index_t v1, signed_index_t v2, signed_index_t v3, signed_index_t v4)
Creates a new tetrahedron.
bool tet_is_conflict(index_t t, const double *p) const
Tests whether a given tetrahedron is in conflict with a given 3d point.
index_t finite_tet_vertex(index_t t, index_t lv) const
Gets the index of a vertex of a tetrahedron.
index_t stellate_cavity(index_t v)
Creates a star of tetrahedra filling the conflict zone.
bool tet_is_real(index_t t) const
Tests whether a tetrahedron is a real one.
index_t max_t() const
Maximum valid index for a tetrahedron.
static index_t tet_facet_vertex(index_t f, index_t v)
Returns the local index of a vertex by facet and by local vertex index in the facet.
index_t locate(const double *p, index_t hint=NO_TETRAHEDRON, bool thread_safe=false, Sign *orient=nullptr) const
Finds the tetrahedron that contains a point.
Abstract interface for Delaunay triangulation in Nd.
Definition delaunay.h:71
Regular Delaunay triangulation of weighted points.
RegularWeightedDelaunay3d(coord_index_t dimension=4)
Constructs a new Regular Delaunay3d triangulation.
~RegularWeightedDelaunay3d() override
RegularWeightedDelaunay3d destructor.
Vector with aligned memory allocation.
Definition memory.h:660
Abstract interface for Delaunay.
Common include file, providing basic definitions. Should be included before anything else by all head...
Geometric functions in 2d and 3d.
uint8_t uint8
Definition numeric.h:135
Global Vorpaline namespace.
geo_signed_index_t signed_index_t
The type for storing and manipulating indices differences.
Definition numeric.h:343
geo_index_t index_t
The type for storing and manipulating indices.
Definition numeric.h:329
Sign
Integer constants that represent the sign of a value.
Definition numeric.h:68
geo_coord_index_t coord_index_t
The type for storing coordinate indices, and iterating on the coordinates of a point.
Definition numeric.h:363
Filtered exact predicates for restricted Voronoi diagrams.