Graphite Version 3
An experimental 3D geometry processing program
Loading...
Searching...
No Matches
generic_RVD.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2000-2022 Inria
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * * Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * * Neither the name of the ALICE Project-Team nor the names of its
14 * contributors may be used to endorse or promote products derived from this
15 * software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
21 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Contact: Bruno Levy
30 *
31 * https://www.inria.fr/fr/bruno-levy
32 *
33 * Inria,
34 * Domaine de Voluceau,
35 * 78150 Le Chesnay - Rocquencourt
36 * FRANCE
37 *
38 */
39
40#ifndef GEOGRAM_VORONOI_GENERIC_RVD
41#define GEOGRAM_VORONOI_GENERIC_RVD
42
48#include <geogram/mesh/index.h>
53
54#include <deque>
55#include <algorithm>
56#include <iostream>
57
67namespace GEOGen {
68
77 template <index_t DIM>
79
82
83 public:
87 static coord_index_t dimension() {
88 return DIM;
89 }
90
95
100
105
110
111 /********************************************************************/
112
121 ) :
122 mesh_(mesh),
123 delaunay_(delaunay),
124 intersections_(DIM),
125 symbolic_(false),
126 check_SR_(true),
127 exact_(false)
128 {
129 delaunay_nn_ = dynamic_cast<GEO::Delaunay_NearestNeighbors*>(
130 delaunay_
131 );
132 dimension_ = DIM;
133 facets_begin_ = UNSPECIFIED_RANGE;
134 facets_end_ = UNSPECIFIED_RANGE;
135 tets_begin_ = UNSPECIFIED_RANGE;
136 tets_end_ = UNSPECIFIED_RANGE;
137 connected_components_priority_ = false;
138 facet_seed_marking_ = nullptr;
139 connected_component_changed_ = false;
140 current_connected_component_ = 0;
141 cur_stamp_ = -1;
142 current_facet_ = GEO::max_index_t();
143 current_seed_ = GEO::max_index_t();
144 current_polygon_ = nullptr;
145 current_tet_ = GEO::max_index_t();
146 current_polyhedron_ = nullptr;
147 }
148
157 connected_components_priority_ = x;
158 }
159
160
172 return connected_components_priority_;
173 }
174
178 const GEO::Mesh* mesh() const {
179 return mesh_;
180 }
181
186 return mesh_;
187 }
188
192 const Delaunay* delaunay() const {
193 return delaunay_;
194 }
195
200 return delaunay_;
201 }
202
207 delaunay_ = delaunay;
208 delaunay_nn_ = dynamic_cast<GEO::Delaunay_NearestNeighbors*>(
209 delaunay_
210 );
211 }
212
217 mesh_ = mesh;
218 }
219
226 void set_facets_range(index_t facets_begin, index_t facets_end) {
227 geo_debug_assert(facets_end >= facets_begin);
228 facets_begin_ = facets_begin;
229 facets_end_ = facets_end;
230 }
231
240 void set_tetrahedra_range(index_t tets_begin, index_t tets_end) {
241 geo_debug_assert(tets_end >= tets_begin);
242 tets_begin_ = tets_begin;
243 tets_end_ = tets_end;
244 }
245
250 index_t nb_facets_in_range() const {
251 return facets_end_ - facets_begin_;
252 }
253
258 index_t nb_tetrahedra_in_range() const {
259 return tets_end_ - tets_begin_;
260 }
261
267 index_t current_facet() const {
268 return current_facet_;
269 }
270
276 index_t current_seed() const {
277 return current_seed_;
278 }
279
287 const Polygon& current_polygon() const {
288 return *current_polygon_;
289 }
290
296 index_t current_tet() const {
297 return current_tet_;
298 }
299
309 return *current_polyhedron_;
310 }
311
318 void set_symbolic(bool x) {
319 symbolic_ = x;
320 // exact mode requires symbolic mode.
321 if(exact_) {
322 symbolic_ = true;
323 }
324 }
325
329 bool symbolic() const {
330 return symbolic_;
331 }
332
338 void set_exact_predicates(bool x) {
339 exact_ = x;
340 // exact mode requires symbolic mode.
341 if(exact_) {
342 symbolic_ = true;
343 }
344 }
345
349 bool exact_predicates() const {
350 return exact_;
351 }
352
356 void set_check_SR(bool x) {
357 check_SR_ = x;
358 }
359
365 bool check_SR() const {
366 return check_SR_;
367 }
368
376 return &intersections_;
377 }
378
379 protected:
391 template <class ACTION>
393 public:
398 PolygonAction(const ACTION& do_it) :
399 do_it_(do_it) {
400 }
401
411 index_t v,
412 index_t f,
413 const Polygon& P
414 ) const {
416 const_cast<ACTION&> ( do_it_)(v, P);
417 }
418
419 protected:
420 const ACTION& do_it_;
421 };
422
430 template <class ACTION>
432 public:
438 TriangleAction(const ACTION& do_it) :
439 do_it_(do_it) {
440 }
441
453 index_t v,
454 index_t f,
455 const Polygon& P
456 ) const {
458 for(index_t i = 1; i + 1 < P.nb_vertices(); i++) {
459 const_cast<ACTION&> (do_it_)(
460 v, P.vertex(0), P.vertex(i), P.vertex(i + 1)
461 );
462 }
463 }
464
465 protected:
466 const ACTION& do_it_;
467 };
468
476 template <class ACTION>
478 public:
484 HalfedgeAction(const ACTION& do_it) :
485 do_it_(do_it) {
486 }
487
498 index_t v,
499 index_t f,
500 const Polygon& P
501 ) const {
504 for(index_t i = 0; i < P.nb_vertices(); i++) {
505 if(P.vertex(i).check_flag(INTERSECT)) {
506 index_t j = P.next_vertex(i);
507 const_cast<ACTION&> (do_it_)(
508 P.vertex(i), P.vertex(j)
509 );
510 }
511 }
512 }
513
514 protected:
515 const ACTION& do_it_;
516 };
517
525 template <class ACTION>
527 public:
533 BorderHalfedgeAction(const ACTION& do_it) :
534 do_it_(do_it) {
535 }
536
548 index_t v,
549 index_t f,
550 const Polygon& P
551 ) const {
553 for(index_t i = 0; i < P.nb_vertices(); i++) {
554 if(P.vertex(i).check_flag(ORIGINAL)) {
555 if(P.vertex(i).adjacent_facet() == -1) {
556 index_t j = P.next_vertex(i);
557 const_cast<ACTION&> (do_it_)(
558 v, P.vertex(i), P.vertex(j)
559 );
560 }
561 }
562 }
563 }
564
565 private:
566 const ACTION& do_it_;
567 };
568
575 template <class ACTION>
577 public:
583 PrimalTriangleAction(const ACTION& do_it) :
584 do_it_(do_it) {
585 }
586
595 index_t iv1,
596 index_t f,
597 const Polygon& P
598 ) const {
600 for(index_t i = 0; i < P.nb_vertices(); i++) {
601 const Vertex& ve = P.vertex(i);
602 // Primal triangles correspond to vertices of
603 // the RVD that are on two bisectors.
604 if(ve.sym().nb_bisectors() == 2) {
605 index_t iv2 = ve.sym().bisector(0);
606 index_t iv3 = ve.sym().bisector(1);
607 // This test generates triangle (iv1,iv2,iv3)
608 // only once (i.e. if iv1 is the vertex with
609 // the smallest index).
610 if(iv1 < iv2 && iv1 < iv3) {
611 const_cast<ACTION&> (do_it_)(iv1, iv2, iv3);
612 }
613 }
614 }
615 }
616
617 protected:
618 const ACTION& do_it_;
619 };
620
634 template <class ACTION>
636 public:
642 PolyhedronAction(const ACTION& do_it) :
643 do_it_(do_it) {
644 }
645
655 index_t v,
656 index_t t,
657 const Polyhedron& C
658 ) const {
659 const_cast<ACTION&> ( do_it_)(v, t, C);
660 }
661
662 protected:
663 const ACTION& do_it_;
664 };
665
688 template <class ACTION>
690 public:
708 const ACTION& do_it,
709 bool visit_inner_tets = false,
710 bool coherent_triangles = false
711 ) :
712 do_it_(do_it),
713 visit_inner_tets_(visit_inner_tets),
714 coherent_triangles_(coherent_triangles)
715 {
716 }
717
727 index_t v,
728 index_t t,
729 const Polyhedron& C
730 ) const {
731 for(index_t cv = 0; cv < C.max_v(); ++cv) {
732 signed_index_t ct = C.vertex_triangle(cv);
733 if(ct == -1) {
734 continue;
735 }
736 geo_debug_assert(C.triangle_is_used(index_t(ct)));
737
738 signed_index_t adjacent = C.vertex_id(cv);
739 signed_index_t v_adj = -1;
740 signed_index_t t_adj = -1;
741
742 if(adjacent < 0) {
743 // Negative adjacent indices correspond to
744 // tet-tet links (ignored when we want to triangulate
745 // the border of the restricted Voronoi cell while
746 // ignoring internal structures).
747 if(!visit_inner_tets_) {
748 continue;
749 }
750 t_adj = -adjacent - 1;
751 } else if(adjacent > 0) {
752 // Positive adjacent indices correspond to
753 // Voronoi seed - Voronoi seed link
754 v_adj = adjacent - 1;
755 }
756 // and adjacent indicex equal to zero corresponds
757 // to tet on border.
758
760 index_t(ct),
761 index_t(C.find_triangle_vertex(index_t(ct), cv))
762 );
763
764 // If required, ensure that two polygonal facets
765 // seen from two different volumetric cells will
766 // be triangulated coherently.
767 if(coherent_triangles_) {
769 }
770
771 const Vertex& v1 = C.triangle_dual(c1.t);
772
773 Polyhedron::Corner c2 = c1;
775 geo_debug_assert(c2 != c1);
776
777 Polyhedron::Corner c3 = c2;
779 geo_debug_assert(c3 != c1);
780 do {
781 const Vertex& v2 = C.triangle_dual(c2.t);
782 const Vertex& v3 = C.triangle_dual(c3.t);
783 const_cast<ACTION&> (do_it_)(
784 v, v_adj, t, t_adj, v1, v2, v3
785 );
786 c2 = c3;
788 } while(c3 != c1);
789 }
790 }
791
809 const Polyhedron& C, Polyhedron::Corner& c,
810 index_t center_vertex_id
811 ) const {
812 Polyhedron::Corner first = c;
813 Polyhedron::Corner cur = c;
814 do {
816 C.triangle_dual(cur.t),
817 C.triangle_dual(c.t),
818 center_vertex_id
819 )) {
820 c = cur;
821 }
823 } while(cur != first);
824 }
825
840 static bool symbolic_compare(
841 const Vertex& p1, const Vertex& p2, index_t center_vertex_id
842 ) {
843 GEO::signed_quadindex K1(
844 signed_index_t(center_vertex_id),
845 p1.sym()[0], p1.sym()[1], p1.sym()[2]
846 );
847 GEO::signed_quadindex K2(
848 signed_index_t(center_vertex_id),
849 p2.sym()[0], p2.sym()[1], p2.sym()[2]
850 );
851 return K1 < K2;
852 }
853
854 protected:
855 const ACTION& do_it_;
856 bool visit_inner_tets_;
857 bool coherent_triangles_;
858 };
859
882 template <class ACTION>
884 public:
891 const ACTION& do_it
892 ) :
893 do_it_(do_it)
894 {
895 }
896
906 index_t v,
907 index_t t,
908 const Polyhedron& C
909 ) const {
910
911 // Find a vertex of the current cell,
912 // that will be used as the 'origin'
913 // vertex
914 const Vertex* v0 = nullptr;
915 index_t t0;
916 for(t0 = 0; t0 < C.max_t(); ++t0) {
917 if(C.triangle_is_used(t0)) {
918 v0 = &C.triangle_dual(t0);
919 break;
920 }
921 }
922
923 // If current cell is empty, return
924 if(v0 == nullptr) {
925 return;
926 }
927
928 for(index_t cv = 0; cv < C.max_v(); ++cv) {
929 signed_index_t ct = C.vertex_triangle(cv);
930 if(ct == -1) {
931 continue;
932 }
933 geo_debug_assert(C.triangle_is_used(index_t(ct)));
934
935 signed_index_t adjacent = C.vertex_id(cv);
936 signed_index_t v_adj = -1;
937 signed_index_t t_adj = -1;
938
939 if(adjacent < 0) {
940 // Negative adjacent indices correspond to
941 // tet-tet links
942 t_adj = -adjacent - 1;
943 } else if(adjacent > 0) {
944 // Positive adjacent indices correspond to
945 // Voronoi seed - Voroni seed link
946 v_adj = adjacent - 1;
947 }
948 // and adjacent indicex equal to zero corresponds
949 // to tet on border.
950
952 index_t(ct), C.find_triangle_vertex(index_t(ct), cv)
953 );
954
955 // If the current facet is incident to
956 // the origin vertex, then skip it (else
957 // it would generate flat tetrahedra)
958 if(facet_is_incident_to_vertex(C, c1, t0)) {
959 continue;
960 }
961
962 const Vertex& v1 = C.triangle_dual(c1.t);
963
964 Polyhedron::Corner c2 = c1;
966 geo_debug_assert(c2 != c1);
967
968 Polyhedron::Corner c3 = c2;
970 geo_debug_assert(c3 != c1);
971 do {
972 const Vertex& v2 = C.triangle_dual(c2.t);
973 const Vertex& v3 = C.triangle_dual(c3.t);
974 const_cast<ACTION&> (do_it_)(
975 v, v_adj, t, t_adj, * v0, v1, v2, v3
976 );
977 c2 = c3;
979 } while(c3 != c1);
980 }
981 }
982
983 protected:
995 const Polyhedron& C, Polyhedron::Corner& c,
996 index_t t
997 ) const {
998 Polyhedron::Corner first = c;
999 Polyhedron::Corner cur = c;
1000 do {
1001 if(cur.t == t) {
1002 return true;
1003 }
1005 } while(cur != first);
1006 return false;
1007 }
1008
1009 protected:
1010 const ACTION& do_it_;
1011 };
1012
1020 template <class ACTION>
1022 public:
1027 PrimalTetrahedronAction(const ACTION& do_it) :
1028 do_it_(do_it) {
1029 }
1030
1040 index_t v,
1041 index_t t,
1042 const Polyhedron& C
1043 ) const {
1045 for(index_t it = 0; it < C.max_t(); ++it) {
1046 if(C.triangle_is_used(it)) {
1047 const SymbolicVertex& sym = C.triangle_dual(it).sym();
1048 if(sym.nb_bisectors() == 3) {
1049 index_t v1 = sym.bisector(0);
1050 index_t v2 = sym.bisector(1);
1051 index_t v3 = sym.bisector(2);
1052 // This test ensures that the tet (v,v1,v2,v3)
1053 // is generated only once.
1054 if(v < v1 && v < v2 && v < v3) {
1055 const_cast<ACTION&> (do_it_)(v, v1, v2, v3);
1056 }
1057 }
1058 }
1059 }
1060 }
1061
1062 protected:
1063 const ACTION& do_it_;
1064 };
1065
1066 public:
1083 template <class ACTION>
1084 inline void for_each_polygon(
1085 const ACTION& action
1086 ) {
1087 this->template compute_surfacic<PolygonAction<ACTION> >(
1088 PolygonAction<ACTION>(action)
1089 );
1090 }
1091
1100 template <class TRIACTION>
1102 const TRIACTION& action
1103 ) {
1104 this->template compute_surfacic<TriangleAction<TRIACTION> >(
1106 );
1107 }
1108
1118 template <class HEACTION>
1120 const HEACTION& action
1121 ) {
1122 this->template compute_surfacic<HalfedgeAction<HEACTION> >(
1124 );
1125 }
1126
1136 template <class BOACTION>
1138 const BOACTION& action
1139 ) {
1140 this->template compute_surfacic<BorderHalfedgeAction<BOACTION> >(
1142 );
1143 }
1144
1154 template <class PRIMTRIACTION>
1156 const PRIMTRIACTION& action
1157 ) {
1158 bool sym_backup = symbolic();
1159 set_symbolic(true);
1160 this->template compute_surfacic<
1161 PrimalTriangleAction<PRIMTRIACTION
1162 > >(
1164 );
1165 set_symbolic(sym_backup);
1166 }
1167
1178 template <class ACTION>
1180 const ACTION& action
1181 ) {
1182 this->template compute_volumetric<PolyhedronAction<ACTION> >(
1184 );
1185 }
1186
1221 template <class ACTION>
1223 const ACTION& action,
1224 bool visit_inner_tets = false, bool coherent_triangles = false
1225 ) {
1226 this->template compute_volumetric<
1228 >(
1230 action, visit_inner_tets, coherent_triangles
1231 )
1232 );
1233 }
1234
1258 template <class ACTION>
1260 const ACTION& action
1261 ) {
1262 this->template compute_volumetric<TetrahedronAction<ACTION> >(
1264 action
1265 )
1266 );
1267 }
1268
1281 template <class ACTION>
1283 const ACTION& action
1284 ) {
1285 bool sym_backup = symbolic();
1286 set_symbolic(true);
1287 this->template compute_volumetric<PrimalTetrahedronAction<ACTION> >(
1289 action
1290 )
1291 );
1292 set_symbolic(sym_backup);
1293 }
1294
1295 protected:
1313 template <class ACTION>
1314 inline void compute_surfacic(const ACTION& action) {
1315 if(connected_components_priority_) {
1316 this->template compute_surfacic_with_cnx_priority<ACTION>(
1317 action
1318 );
1319 } else {
1320 this->template compute_surfacic_with_seeds_priority<ACTION>(
1321 action
1322 );
1323 }
1324 }
1325
1338 template <class ACTION>
1340 const ACTION& action
1341 ) {
1342 if(
1343 facets_begin_ == UNSPECIFIED_RANGE &&
1344 facets_end_ == UNSPECIFIED_RANGE
1345 ) {
1346 facets_begin_ = 0;
1347 facets_end_ = mesh_->facets.nb();
1348 }
1349 current_polygon_ = nullptr;
1350 GEO::vector<index_t> seed_stamp(
1351 delaunay_->nb_vertices(), index_t(-1)
1352 );
1353 GEO::vector<bool> facet_is_marked(facets_end_-facets_begin_, false);
1355
1356 FacetSeedStack adjacent_facets;
1357 SeedStack adjacent_seeds;
1358 Polygon F;
1359 GEO::Attribute<double> vertex_weight;
1360 vertex_weight.bind_if_is_defined(
1361 mesh_->vertices.attributes(), "weight"
1362 );
1363
1364 // The algorithm propagates along both the facet-graph of
1365 // the surface and the 1-skeleton of the Delaunay triangulation,
1366 // and computes all the relevant intersections between
1367 // each Voronoi cell and facet.
1368 for(index_t f = facets_begin_; f < facets_end_; f++) {
1369 if(!facet_is_marked[f-facets_begin_]) {
1370 // Propagate along the facet-graph.
1371 facet_is_marked[f-facets_begin_] = true;
1372 adjacent_facets.push(
1374 );
1375 while(!adjacent_facets.empty()) {
1376 current_facet_ = adjacent_facets.top().f;
1377 current_seed_ = adjacent_facets.top().seed;
1378 adjacent_facets.pop();
1379
1380 // Copy the current facet from the Mesh into
1381 // RestrictedVoronoiDiagram's Polygon data structure
1382 // (gathers all the necessary information)
1384 mesh_, current_facet_, symbolic_, vertex_weight
1385 );
1386
1387 // Propagate along the Delaunay 1-skeleton
1388 // This will traverse all the seeds such that their
1389 // Voronoi cell has a non-empty intersection with
1390 // the current facet.
1391 seed_stamp[current_seed_] = current_facet_;
1392 adjacent_seeds.push(current_seed_);
1393
1394 while(!adjacent_seeds.empty()) {
1395 current_seed_ = adjacent_seeds.top();
1396 adjacent_seeds.pop();
1397
1398 current_polygon_ = intersect_cell_facet(
1399 current_seed_, F
1400 );
1401
1402 action(
1403 current_seed_, current_facet_, current_polygon()
1404 );
1405
1406 // Propagate to adjacent facets and adjacent seeds
1407 for(index_t v = 0;
1408 v < current_polygon().nb_vertices(); v++
1409 ) {
1410 const Vertex& ve = current_polygon().vertex(v);
1411 signed_index_t neigh_f = ve.adjacent_facet();
1412 if(
1413 neigh_f >= signed_index_t(facets_begin_) &&
1414 neigh_f < signed_index_t(facets_end_) &&
1415 neigh_f != signed_index_t(current_facet_)
1416 ) {
1417 if(!facet_is_marked[
1418 index_t(neigh_f)-facets_begin_
1419 ]) {
1420 facet_is_marked[
1421 index_t(neigh_f)-facets_begin_
1422 ] = true;
1423 adjacent_facets.push(
1424 FacetSeed(
1425 index_t(neigh_f),
1426 current_seed_
1427 )
1428 );
1429 }
1430 }
1431 signed_index_t neigh_s = ve.adjacent_seed();
1432 if(neigh_s != -1) {
1433 if(
1434 seed_stamp[neigh_s] != current_facet_
1435 ) {
1436 seed_stamp[neigh_s] = current_facet_;
1437 adjacent_seeds.push(index_t(neigh_s));
1438 }
1439 }
1440 }
1441 }
1442 }
1443 }
1444 }
1445 current_polygon_ = nullptr;
1446 }
1447
1461 template <class ACTION>
1463 const ACTION& action
1464 ) {
1465 if(connected_components_priority_) {
1466 this->template compute_volumetric_with_cnx_priority<ACTION>(
1467 action
1468 );
1469 } else {
1470 this->template compute_volumetric_with_seeds_priority<ACTION>(
1471 action
1472 );
1473 }
1474 }
1475
1488 template <class ACTION>
1490 const ACTION& action
1491 ) {
1492 if(
1493 tets_begin_ == UNSPECIFIED_RANGE &&
1494 tets_end_ == UNSPECIFIED_RANGE
1495 ) {
1496 tets_begin_ = 0;
1497 tets_end_ = mesh_->cells.nb();
1498 }
1499
1500 geo_assert(tets_begin_ != UNSPECIFIED_RANGE);
1501 geo_assert(tets_end_ != UNSPECIFIED_RANGE);
1502
1503 GEO::vector<index_t> seed_stamp(
1504 delaunay_->nb_vertices(), index_t(-1)
1505 );
1506 GEO::vector<bool> tet_is_marked(tets_end_-tets_begin_, false);
1508
1509 TetSeedStack adjacent_tets;
1510 SeedStack adjacent_seeds;
1511 Polyhedron C(dimension());
1512 GEO::Attribute<double> vertex_weight;
1513 vertex_weight.bind_if_is_defined(
1514 mesh_->vertices.attributes(), "weight"
1515 );
1516
1517 current_polyhedron_ = &C;
1518 // The algorithm propagates along both the facet-graph of
1519 // the surface and the 1-skeleton of the Delaunay triangulation,
1520 // and computes all the relevant intersections between
1521 // each Voronoi cell and facet.
1522 for(index_t t = tets_begin_; t < tets_end_; ++t) {
1523 if(!tet_is_marked[t-tets_begin_]) {
1524 // Propagate along the tet-graph.
1525 tet_is_marked[t-tets_begin_] = true;
1526 adjacent_tets.push(
1528 );
1529 while(!adjacent_tets.empty()) {
1530 current_tet_ = adjacent_tets.top().f;
1531 current_seed_ = adjacent_tets.top().seed;
1532 adjacent_tets.pop();
1533
1534 // Note: current cell could be looked up here,
1535 // (from current_tet_) if we chose to keep it
1536 // and copy it right before clipping (I am
1537 // not sure that it is worth it, lookup time
1538 // will be probably fast enough)
1539
1540 // Propagate along the Delaunay 1-skeleton
1541 // This will traverse all the seeds such that their
1542 // Voronoi cell has a non-empty intersection with
1543 // the current facet.
1544 seed_stamp[current_seed_] = current_tet_;
1545 adjacent_seeds.push(current_seed_);
1546
1547 while(!adjacent_seeds.empty()) {
1548 current_seed_ = adjacent_seeds.top();
1549 adjacent_seeds.pop();
1550
1552 mesh_, current_tet_, symbolic_, vertex_weight
1553 );
1554
1556 current_seed_, C
1557 );
1558
1559 action(
1560 current_seed_, current_tet_,
1562 );
1563
1564 // Propagate to adjacent tets and adjacent seeds
1565 // Iterate on the vertices of the cell (remember:
1566 // the cell is represented in dual form)
1567 for(index_t v = 0;
1568 v < current_polyhedron().max_v(); ++v
1569 ) {
1570
1571 // Skip clipping planes that are no longer
1572 // connected to a cell facet.
1573 if(
1575 == -1
1576 ) {
1577 continue;
1578 }
1579
1580 signed_index_t id =
1582 if(id > 0) {
1583 // Propagate to adjacent seed
1584 index_t neigh_s = index_t(id - 1);
1585 if(seed_stamp[neigh_s] != current_tet_) {
1586 seed_stamp[neigh_s] = current_tet_;
1587 adjacent_seeds.push(neigh_s);
1588 }
1589 } else if(id < 0) {
1590 // id==0 corresponds to facet on boundary
1591 // (skipped)
1592 // id<0 corresponds to adjacent tet index
1593
1594 // Propagate to adjacent tet
1595 signed_index_t neigh_t = -id - 1;
1596 if(
1597 neigh_t >=
1598 signed_index_t(tets_begin_) &&
1599 neigh_t < signed_index_t(tets_end_) &&
1600 neigh_t != signed_index_t(current_tet_)
1601 ) {
1602 if(!tet_is_marked[
1603 index_t(neigh_t)-tets_begin_
1604 ]) {
1605 tet_is_marked[
1606 index_t(neigh_t)-tets_begin_
1607 ] = true;
1608 adjacent_tets.push(
1609 TetSeed(
1610 index_t(neigh_t),
1611 current_seed_
1612 )
1613 );
1614 }
1615 }
1616 }
1617 }
1618 }
1619 }
1620 }
1621 }
1622 current_polyhedron_ = nullptr;
1623 }
1624
1625
1645 template <class ACTION>
1647 const ACTION& action
1648 ) {
1649
1650 if(
1651 tets_begin_ == UNSPECIFIED_RANGE &&
1652 tets_end_ == UNSPECIFIED_RANGE
1653 ) {
1654 tets_begin_ = 0;
1655 tets_end_ = mesh_->cells.nb();
1656 }
1657
1658 geo_assert(tets_begin_ != UNSPECIFIED_RANGE);
1659 geo_assert(tets_end_ != UNSPECIFIED_RANGE);
1660
1661 current_polyhedron_ = nullptr;
1663
1664 std::deque<TetSeed> adjacent_seeds;
1665 std::stack<index_t> adjacent_tets;
1666
1667 static constexpr index_t NO_STAMP = index_t(-1);
1668 GEO::vector<index_t> tet_stamp(
1669 tets_end_ - tets_begin_, NO_STAMP
1670 );
1671
1672 TetSeedMarking visited(
1673 tets_end_ - tets_begin_, delaunay_->nb_vertices()
1674 );
1675
1676 // Yes, facet_seed_marking_ points to the TetSeedMarking,
1677 // (TetSeedMarking is typedef-ed as FacetSeedMarking),
1678 // ugly I know... to be revised.
1679 facet_seed_marking_ = &visited;
1680 Polyhedron C(dimension());
1681 current_polyhedron_ = &C;
1682
1683 current_connected_component_ = 0;
1684 // index_t C_index = tets_end_ + 1; // Unused (see comment later)
1685
1686 GEO::Attribute<double> vertex_weight;
1687 vertex_weight.bind_if_is_defined(
1688 mesh_->vertices.attributes(),"weight"
1689 );
1690
1691 // The algorithm propagates along both the facet-graph of
1692 // the surface and the 1-skeleton of the Delaunay triangulation,
1693 // and computes all the relevant intersections between
1694 // each Voronoi cell and facet.
1695 for(index_t t = tets_begin_; t < tets_end_; ++t) {
1696 if(tet_stamp[t - tets_begin_] == NO_STAMP) {
1697 current_tet_ = t;
1698 current_seed_ = find_seed_near_tet(t);
1699
1700 adjacent_seeds.push_back(
1701 TetSeed(current_tet_, current_seed_)
1702 );
1703
1704 // Propagate along the Delaunay-graph.
1705 while(!adjacent_seeds.empty()) {
1706 // Yes, f, because TetSeed is typedef-ed as FacetSeed
1707 current_tet_ = adjacent_seeds.front().f;
1708 current_seed_ = adjacent_seeds.front().seed;
1709 adjacent_seeds.pop_front();
1710 if(
1711 tet_stamp[current_tet_ - tets_begin_] ==
1712 current_seed_
1713 ) {
1714 continue;
1715 }
1716
1717 if(visited.is_marked(current_tet_, current_seed_)) {
1718 continue;
1719 }
1720
1721 connected_component_changed_ = true;
1722 adjacent_tets.push(current_tet_);
1723 tet_stamp[current_tet_ - tets_begin_] =
1724 current_seed_;
1725 while(!adjacent_tets.empty()) {
1726 current_tet_ = adjacent_tets.top();
1727 adjacent_tets.pop();
1728
1729 // Copy the current tet from the Mesh into
1730 // RestrictedVoronoiDiagram's Polyhedron data structure
1731 // (gathers all the necessary information)
1732
1734 mesh_, current_tet_, symbolic_, vertex_weight
1735 );
1736
1737 // Note: difference with compute_surfacic_with_cnx_priority():
1738 // Since intersect_cell_cell() overwrites C, we
1739 // need to initialize C from the mesh for each visited
1740 // (tet,seed) pair (and the test for current_tet_ change
1741 // with C_index is not used here).
1742 // C_index = current_tet_;
1743
1744 intersect_cell_cell(current_seed_, C);
1745 action(
1746 current_seed_, current_tet_, current_polyhedron()
1747 );
1748 connected_component_changed_ = false;
1749
1750 bool touches_RVC_border = false;
1751
1752 // Propagate to adjacent tets and adjacent seeds
1753 for(index_t v = 0;
1754 v < current_polyhedron().max_v(); ++v
1755 ) {
1756
1757 // Skip clipping planes that are no longer
1758 // connected to a cell facet.
1759 if(
1761 == -1
1762 ) {
1763 continue;
1764 }
1765
1766 signed_index_t id = current_polyhedron().vertex_id(v);
1767 if(id < 0) {
1768 // id == 0 corresponds to facet on boundary
1769 // (skipped)
1770 // id < 0 corresponds to adjacent tet index
1771 signed_index_t s_neigh_t = -id-1;
1772 if(
1773 s_neigh_t >= signed_index_t(tets_begin_) &&
1774 s_neigh_t < signed_index_t(tets_end_)
1775 ) {
1777 s_neigh_t !=
1778 signed_index_t(current_tet_)
1779 );
1780 index_t neigh_t = index_t(s_neigh_t);
1781 if(
1782 tet_stamp[neigh_t - tets_begin_] !=
1783 current_seed_
1784 ) {
1785 tet_stamp[neigh_t - tets_begin_] =
1786 current_seed_;
1787 adjacent_tets.push(neigh_t);
1788 }
1789 }
1790 } else if(id > 0) {
1791 index_t neigh_s = index_t(id-1);
1792 touches_RVC_border = true;
1793 TetSeed ts(current_tet_, neigh_s);
1794 if(!visited.is_marked(ts)) {
1795 adjacent_seeds.push_back(ts);
1796 }
1797 }
1798
1799 }
1800 if(touches_RVC_border) {
1801 visited.mark(
1802 TetSeed(current_tet_, current_seed_),
1803 current_connected_component_
1804 );
1805 }
1806 }
1807 ++current_connected_component_;
1808 }
1809 }
1810 }
1811 facet_seed_marking_ = nullptr;
1812 }
1813
1814
1815 public:
1821 bool facet_seed_is_visited(index_t f, index_t s) const {
1822 geo_debug_assert(facet_seed_marking_ != nullptr);
1823 return facet_seed_marking_->is_marked(FacetSeed(f, s));
1824 }
1825
1835 index_t f, index_t s
1836 ) const {
1837 geo_debug_assert(facet_seed_marking_ != nullptr);
1838 return facet_seed_marking_->get_connected_component(
1839 FacetSeed(f, s)
1840 );
1841 }
1842
1847 return connected_component_changed_;
1848 }
1849
1854 return current_connected_component_;
1855 }
1856
1857 protected:
1878 template <class ACTION>
1880 const ACTION& action
1881 ) {
1882
1883 if(
1884 facets_begin_ == UNSPECIFIED_RANGE &&
1885 facets_end_ == UNSPECIFIED_RANGE
1886 ) {
1887 facets_begin_ = 0;
1888 facets_end_ = mesh_->facets.nb();
1889 }
1890
1891 current_polygon_ = nullptr;
1893
1894 std::deque<FacetSeed> adjacent_seeds;
1895 std::stack<index_t> adjacent_facets;
1896
1897 static constexpr index_t NO_STAMP = index_t(-1);
1898 GEO::vector<index_t> facet_stamp(
1899 facets_end_ - facets_begin_, NO_STAMP
1900 );
1901
1902 FacetSeedMarking visited(
1903 facets_end_ - facets_begin_, delaunay_->nb_vertices()
1904 );
1905
1906 facet_seed_marking_ = &visited;
1907 Polygon F;
1908 current_connected_component_ = 0;
1909 index_t F_index = facets_end_ + 1;
1910
1911 GEO::Attribute<double> vertex_weight;
1912 vertex_weight.bind_if_is_defined(
1913 mesh_->vertices.attributes(),"weight"
1914 );
1915
1916 // The algorithm propagates along both the facet-graph of
1917 // the surface and the 1-skeleton of the Delaunay triangulation,
1918 // and computes all the relevant intersections between
1919 // each Voronoi cell and facet.
1920 for(index_t f = facets_begin_; f < facets_end_; ++f) {
1921 if(facet_stamp[f - facets_begin_] == NO_STAMP) {
1922 current_facet_ = f;
1923 current_seed_ = find_seed_near_facet(f);
1924
1925 adjacent_seeds.push_back(
1926 FacetSeed(current_facet_, current_seed_)
1927 );
1928
1929 // Propagate along the Delaunay-graph.
1930 while(
1931 !adjacent_seeds.empty()
1932 ) {
1933 current_facet_ = adjacent_seeds.front().f;
1934 current_seed_ = adjacent_seeds.front().seed;
1935 adjacent_seeds.pop_front();
1936 if(
1937 facet_stamp[current_facet_ - facets_begin_] ==
1938 current_seed_
1939 ) {
1940 continue;
1941 }
1942
1943 if(visited.is_marked(current_facet_, current_seed_)) {
1944 continue;
1945 }
1946
1947 connected_component_changed_ = true;
1948 adjacent_facets.push(current_facet_);
1949 facet_stamp[current_facet_ - facets_begin_] =
1950 current_seed_;
1951 while(!adjacent_facets.empty()) {
1952 current_facet_ = adjacent_facets.top();
1953 adjacent_facets.pop();
1954
1955 // Copy the current facet from the Mesh into
1956 // RestrictedVoronoiDiagram's Polygon data structure
1957 // (gathers all the necessary information)
1958 if(F_index != current_facet_) {
1960 mesh_, current_facet_, symbolic_,
1961 vertex_weight
1962 );
1963 F_index = current_facet_;
1964 }
1965
1966 current_polygon_ = intersect_cell_facet(
1967 current_seed_, F
1968 );
1969 action(
1970 current_seed_, current_facet_, current_polygon()
1971 );
1972 connected_component_changed_ = false;
1973
1974 bool touches_RVC_border = false;
1975
1976 // Propagate to adjacent facets and adjacent seeds
1977 for(index_t v = 0;
1978 v < current_polygon().nb_vertices(); v++
1979 ) {
1980 const Vertex& ve = current_polygon().vertex(v);
1981 signed_index_t s_neigh_f = ve.adjacent_facet();
1982 if(
1983 s_neigh_f >= signed_index_t(facets_begin_)
1984 &&
1985 s_neigh_f < signed_index_t(facets_end_)
1986 ) {
1988 s_neigh_f !=
1989 signed_index_t(current_facet_)
1990 );
1991 index_t neigh_f = index_t(s_neigh_f);
1992 if(
1993 facet_stamp[neigh_f - facets_begin_] !=
1994 current_seed_
1995 ) {
1996 facet_stamp[neigh_f - facets_begin_] =
1997 current_seed_;
1998 adjacent_facets.push(neigh_f);
1999 }
2000 }
2001 signed_index_t neigh_s = ve.adjacent_seed();
2002 if(neigh_s != -1) {
2003 touches_RVC_border = true;
2004 FacetSeed fs(
2005 current_facet_, index_t(neigh_s)
2006 );
2007 if(!visited.is_marked(fs)) {
2008 adjacent_seeds.push_back(fs);
2009 }
2010 }
2011 }
2012 if(touches_RVC_border) {
2013 visited.mark(
2014 FacetSeed(current_facet_, current_seed_),
2015 current_connected_component_
2016 );
2017 }
2018 }
2019 ++current_connected_component_;
2020 }
2021 }
2022 }
2023 facet_seed_marking_ = nullptr;
2024 }
2025
2033 index_t find_seed_near_facet(index_t f) {
2034 const double* p = mesh_->vertices.point_ptr(
2035 mesh_->facets.vertex(f,0)
2036 );
2037 return find_seed_near_point(p);
2038 }
2039
2047 index_t find_seed_near_tet(index_t t) {
2048 index_t v = mesh_->cells.tet_vertex(t, 0);
2049 const double* p = mesh_->vertices.point_ptr(v);
2050 return find_seed_near_point(p);
2051 }
2052
2059 index_t find_seed_near_point(const double* p) {
2060 // In order to be compatible with the symbolic
2061 // perturbation, if the nearest neighbor is
2062 // non-unique, we need to return the one of
2063 // lowest index (because in case of several seeds
2064 // at equal distance, the one of lowest index
2065 // is guaranteed to have the facet in its Voronoi
2066 // cell from the point of view of symbolic
2067 // perturbation).
2068 if(exact_ && delaunay_nn_ != nullptr) {
2069 // TODO: may need more than 10
2070 index_t neighbors[10];
2071 double neighbors_sq_dist[10];
2072 index_t nb = 10;
2073 if(delaunay_nn_->nb_vertices() < nb) {
2074 nb = delaunay_nn_->nb_vertices();
2075 }
2076 delaunay_nn_->nn_search()->get_nearest_neighbors(
2077 nb, p, neighbors, neighbors_sq_dist
2078 );
2079 index_t nearest = neighbors[0];
2080 double min_d = neighbors_sq_dist[0];
2081 for(index_t i = 1; i < nb; ++i) {
2082 if(neighbors_sq_dist[i] != min_d) {
2083 break;
2084 }
2085 if(neighbors[i] < nearest) {
2086 nearest = neighbors[i];
2087 }
2088 }
2089 return nearest;
2090 }
2091
2092 return delaunay_->nearest_vertex(p);
2093 }
2094
2105 void swap_polygons(Polygon*& ping, Polygon*& pong) {
2106 if(ping != &P1 && ping != &P2) {
2107 // First clipping operation, ping points to F
2108 // (current facet copied)
2109 ping = &P2;
2110 pong = &P1;
2111 } else {
2112 std::swap(ping, pong);
2113 }
2114 }
2115
2124 intersections_.clear();
2125
2126 // Initialize ping-pong pointers for Sutherland-Hodgman
2127 // re-entrant clipping and copy current facet into 'ping' buffer.
2128 Polygon* ping = &F;
2129 Polygon* pong = &P2;
2130
2131 // Clip current facet by current Voronoi cell (associated with seed)
2132 if(delaunay_nn_ != nullptr) {
2133 clip_by_cell_SR(seed, ping, pong); // "Security Radius" mode.
2134 } else {
2135 clip_by_cell(seed, ping, pong); // Standard mode.
2136 }
2137
2138 return ping; // Yes, 'ping', and not 'pong'
2139 // see comments in clip_by_cell()
2140 }
2141
2157 void clip_by_cell_SR(index_t i, Polygon*& ping, Polygon*& pong) {
2158 // 'Security radius' mode.
2159 // Note: the vertices of the neighborhood are returned in
2160 // increasing distance to pi. We stop the clippings as soon as the
2161 // 'security radius' is reached.
2162 const double* geo_restrict pi = delaunay_->vertex_ptr(i);
2163 geo_assume_aligned(pi, geo_dim_alignment(DIM));
2164
2165 index_t jj = 0;
2166 index_t prev_nb_neighbors = 0;
2167 neighbors_.resize(0);
2168 while(neighbors_.size() < delaunay_nn_->nb_vertices() - 1) {
2169
2170 delaunay_nn_->get_neighbors(i, neighbors_);
2171 if(neighbors_.size() == 0) {
2172 return;
2173 }
2174 if(prev_nb_neighbors == neighbors_.size()) {
2175 return;
2176 }
2177
2178 for(; jj < neighbors_.size(); jj++) {
2179 index_t j = neighbors_[jj];
2180 double R2 = 0.0;
2181 for(index_t k = 0; k < ping->nb_vertices(); k++) {
2182 geo_decl_aligned(double dik);
2183 const double* geo_restrict pk = ping->vertex(k).point();
2184 geo_assume_aligned(pk, geo_dim_alignment(DIM));
2185 dik = GEO::Geom::distance2(pi, pk, dimension());
2186 R2 = std::max(R2, dik);
2187 }
2188 geo_decl_aligned(double dij);
2189 const double* geo_restrict pj = delaunay_->vertex_ptr(j);
2190 geo_assume_aligned(pj, geo_dim_alignment(DIM));
2191 dij = GEO::Geom::distance2(pi, pj, dimension());
2192 // A little bit more than 4, because when
2193 // exact predicates are used, we need to
2194 // include tangent bisectors in the computation.
2195 if(dij > 4.1 * R2) {
2196 return;
2197 }
2198 clip_by_plane(*ping, *pong, i, j);
2199 swap_polygons(ping, pong);
2200 }
2201
2202 if(!check_SR_) {
2203 return;
2204 }
2205
2206 index_t nb_neighbors = neighbors_.size();
2207 prev_nb_neighbors = nb_neighbors;
2208
2209 if(nb_neighbors > 8) {
2210 nb_neighbors += nb_neighbors / 8;
2211 } else {
2212 nb_neighbors++;
2213 }
2214
2215 nb_neighbors = std::min(
2216 nb_neighbors,
2217 delaunay_nn_->nb_vertices() - 1
2218 );
2219
2220 delaunay_nn_->enlarge_neighborhood(i, nb_neighbors);
2221 }
2222 }
2223
2240 void clip_by_cell(index_t i, Polygon*& ping, Polygon*& pong) {
2241 get_neighbors(i);
2242 for(index_t jj = 0; jj < neighbors_.size(); jj++) {
2243 index_t j = neighbors_[jj];
2244 clip_by_plane(*ping, *pong, i, j);
2245 swap_polygons(ping, pong);
2246 }
2247 }
2248
2264 Polygon& ping, Polygon& pong,
2265 index_t i, index_t j
2266 ) {
2267 ping.clip_by_plane<DIM>(
2268 pong, intersections_, mesh_, delaunay_, i, j, exact_, symbolic_
2269 );
2270 }
2271
2278 public:
2285 void intersect_cell_cell(index_t seed, Polyhedron& C) {
2286 // Clip current facet by current Voronoi cell (associated with seed)
2287 if(delaunay_nn_ != nullptr) {
2288 clip_by_cell_SR(seed, C); // "Security Radius" mode.
2289 } else {
2290 clip_by_cell(seed, C); // Standard mode.
2291 }
2292 }
2293
2294 protected:
2301 void clip_by_cell_SR(index_t seed, Polyhedron& C) {
2302
2303 // 'Security radius' mode.
2304 // Note: the vertices of the neighborhood are returned in
2305 // increasing distance to pi. We stop the clippings as soon as the
2306 // 'security radius' is reached.
2307 const double* geo_restrict pi = delaunay_->vertex_ptr(seed);
2308 geo_assume_aligned(pi, geo_dim_alignment(DIM));
2309
2310 index_t jj = 0;
2311 index_t prev_nb_neighbors = 0;
2312 neighbors_.resize(0);
2313
2314 while(neighbors_.size() < delaunay_nn_->nb_vertices() - 1) {
2315
2316 delaunay_nn_->get_neighbors(seed, neighbors_);
2317 if(neighbors_.size() == 0) {
2318 return;
2319 }
2320 if(prev_nb_neighbors == neighbors_.size()) {
2321 return;
2322 }
2323
2324 for(; jj < neighbors_.size(); jj++) {
2325 index_t j = neighbors_[jj];
2326 double R2 = 0.0;
2327 for(index_t k = 0; k < C.max_t(); ++k) {
2328 if(!C.triangle_is_used(k)) {
2329 continue;
2330 }
2331 geo_decl_aligned(double dik);
2332 const double* geo_restrict pk =
2333 C.triangle_dual(k).point();
2334 geo_assume_aligned(pk, geo_dim_alignment(DIM));
2335 dik = GEO::Geom::distance2(pi, pk, dimension());
2336 R2 = std::max(R2, dik);
2337 }
2338 geo_decl_aligned(double dij);
2339 const double* geo_restrict pj = delaunay_->vertex_ptr(j);
2340 geo_assume_aligned(pj, geo_dim_alignment(DIM));
2341 dij = GEO::Geom::distance2(pi, pj, dimension());
2342 // A little bit more than 4, because when
2343 // exact predicates are used, we need to
2344 // include tangent bisectors in the computation.
2345 if(dij > 4.1 * R2) {
2346 return;
2347 }
2348 clip_by_plane(C, seed, j);
2349 }
2350
2351 if(!check_SR_) {
2352 return;
2353 }
2354
2355 index_t nb_neighbors = neighbors_.size();
2356 prev_nb_neighbors = nb_neighbors;
2357
2358 if(nb_neighbors > 8) {
2359 nb_neighbors += nb_neighbors / 8;
2360 } else {
2361 nb_neighbors++;
2362 }
2363
2364 nb_neighbors = std::min(
2365 nb_neighbors,
2366 delaunay_nn_->nb_vertices() - 1
2367 );
2368 delaunay_nn_->enlarge_neighborhood(seed, nb_neighbors);
2369 }
2370 }
2371
2378 void clip_by_cell(index_t seed, Polyhedron& C) {
2379 get_neighbors(seed);
2380 // Check whether cell is empty (may happen with
2381 // power diagrams)
2382 if(neighbors_.size() == 0) {
2383 C.clear();
2384 }
2385 for(index_t jj = 0; jj < neighbors_.size(); jj++) {
2386 index_t j = neighbors_[jj];
2387 clip_by_plane(C, seed, j);
2388 }
2389 }
2390
2398 void clip_by_plane(Polyhedron& C, index_t i, index_t j) {
2399 C.clip_by_plane<DIM>(
2400 mesh_, delaunay_, i, j, exact_, symbolic_
2401 );
2402 }
2403
2419 // In dimension 3 (and if we do not used the ANN-based algorithm),
2420 // we can use the faster 'stamp-based' algorithm for finding the
2421 // neighbors.
2422 if(delaunay_->dimension() == 3 && delaunay_->nb_cells() != 0) {
2423 cur_stamp_ = 0;
2424 stamp_.assign(delaunay_->nb_vertices(), -1);
2425 }
2426 }
2427
2435 void get_neighbors(index_t v) {
2436 if(stamp_.size() == 0) {
2437 // Used in ANN mode and with higher dimensions.
2438 delaunay_->get_neighbors(v, neighbors_);
2439 } else {
2440 // Used in 3D mode with standard Delaunay.
2441 // The following loop replaces
2442 // delaunay_->get_neighbors(v,neighbors_) ;
2443 // (and makes the overall algorithm 10 to 30% more efficient)
2444 neighbors_.resize(0);
2445 index_t t = index_t(delaunay_->vertex_cell(v));
2446 do {
2447 index_t lv = delaunay_->index(t, signed_index_t(v));
2448 for(index_t lw = 0; lw < delaunay_->cell_size(); lw++) {
2449 if(lw != lv) {
2450 index_t w = index_t(delaunay_->cell_vertex(t, lw));
2451 if(stamp_[w] != cur_stamp_) {
2452 stamp_[w] = cur_stamp_;
2453 neighbors_.push_back(w);
2454 }
2455 }
2456 }
2457 t = index_t(delaunay_->next_around_vertex(t, lv));
2458 } while(t != index_t(delaunay_->vertex_cell(v)));
2459 cur_stamp_++;
2460 }
2461 }
2462
2465 protected:
2466 GEO::Mesh* mesh_;
2467 Delaunay* delaunay_;
2468 GEO::Delaunay_NearestNeighbors* delaunay_nn_;
2469
2470 PointAllocator intersections_;
2471 Polygon* current_polygon_;
2472 Polygon P1, P2;
2473 GEO::vector<index_t> neighbors_;
2474 index_t current_facet_;
2475 index_t current_seed_;
2476 Polyhedron* current_polyhedron_;
2477 index_t current_tet_;
2478
2479 // For optimized get_neighbors().
2480 signed_index_t cur_stamp_;
2482
2483 bool symbolic_;
2484 bool check_SR_;
2485 bool exact_;
2486
2487 coord_index_t dimension_;
2488
2489 static constexpr index_t UNSPECIFIED_RANGE = index_t(-1);
2490
2491 index_t facets_begin_;
2492 index_t facets_end_;
2493
2494 index_t tets_begin_;
2495 index_t tets_end_;
2496
2497 bool connected_components_priority_;
2498 FacetSeedMarking* facet_seed_marking_;
2499 bool connected_component_changed_;
2500 index_t current_connected_component_;
2501
2502 private:
2506 RestrictedVoronoiDiagram(const thisclass& rhs);
2507
2511 thisclass& operator= (const thisclass& rhs);
2512 };
2513}
2514
2515namespace GEO {
2516
2521}
2522
2523#endif
Declaration of base types for implementing user-defined code that queries the cells of a restricted V...
A function to suppress unused parameters compilation warnings.
#define geo_assert(x)
Verifies that a condition is met.
Definition assert.h:149
#define geo_debug_assert(x)
Verifies that a condition is met.
Definition assert.h:196
Generic mechanism for attributes.
A Corner corresponds to a vertex seen from a triangle.
Computes the intersection between a set of halfspaces.
const GEOGen::Vertex & triangle_dual(index_t t) const
Gets the dual vertex that corresponds to a triangle.
index_t max_v() const
Gets the maximum valid vertex index plus one.
void initialize_from_mesh_tetrahedron(const Mesh *mesh, index_t t, bool symbolic, const GEO::Attribute< double > &vertex_weight)
Assigns a mesh tetrahedron to this ConvexCell.
signed_index_t clip_by_plane(const Mesh *mesh, const Delaunay *delaunay, index_t i, index_t j, bool exact, bool symbolic)
Clips this ConvexCell with a plane.
signed_index_t vertex_id(index_t v) const
Gets the id of a vertex.
void clear()
Clears this ConvexCell.
index_t find_triangle_vertex(index_t t, index_t v) const
Finds the local index of a triangle vertex.
bool triangle_is_used(index_t t) const
Tests whether a given triangle is used.
void move_to_next_around_vertex(Corner &c) const
Replaces a corner by the next corner obtained by turing around the vertex.
signed_index_t vertex_triangle(index_t v) const
Gets one of the triangles incident to a vertex.
index_t max_t() const
Gets the maximum valid triangle index plus one.
Stores associations between (facet,seed) pairs and the index of a connected component.
signed_index_t get_connected_component(const FacetSeed &fs) const
Gets the index of the connected component associated with a given FacetSeed.
void mark(const FacetSeed &fs, index_t conn_comp)
Marks a FacetSeed and sets the associated connected component index.
bool is_marked(index_t facet, index_t seed) const
Tests whether a given facet,seed couple is marked.
An allocator for points that are created from intersections in GenericVoronoiDiagram.
void clear()
Clears this PointAllocator.
Internal representation of polygons for GenericVoronoiDiagram.
void initialize_from_mesh_facet(const Mesh *mesh, index_t f, bool symbolic, const GEO::Attribute< double > &vertex_weight)
Assigns a mesh facet to this Polygon.
index_t nb_vertices() const
Gets the number of vertices.
const Vertex & vertex(index_t i) const
Gets a vertex by index.
index_t next_vertex(index_t i) const
Gets the index of the successor of a Vertex.
void clip_by_plane(Polygon &target, PointAllocator &target_intersections, const Mesh *mesh, const Delaunay *delaunay, index_t i, index_t j, bool exact, bool symbolic)
Clips a polygon with a plane.
Adapter class used internally to implement for_each_border_halfedge().
BorderHalfedgeAction(const ACTION &do_it)
Creates a new BorderHalfedgeAction that wraps a user ACTION instance.
void operator()(index_t v, index_t f, const Polygon &P) const
Callback called for each integration simplex.
Adapter class used internally to implement for_each_halfedge().
void operator()(index_t v, index_t f, const Polygon &P) const
Callback called for each integration simplex.
HalfedgeAction(const ACTION &do_it)
Creates a new HalfedgeAction that wraps a user ACTION instance.
Adapter class used internally to implement for_each_polygon()
void operator()(index_t v, index_t f, const Polygon &P) const
Callback called for each polygon.
PolygonAction(const ACTION &do_it)
Creates a new PolygonAction around a user ACTION instance.
Adapter class used internally to implement for_each_polyhedron()
void operator()(index_t v, index_t t, const Polyhedron &C) const
Callback called for each polyhedron.
PolyhedronAction(const ACTION &do_it)
Creates a new PolyhedronAction that wraps a user ACTION instance.
Adapter class used internally to implement for_each_primal_tetrahedron()
PrimalTetrahedronAction(const ACTION &do_it)
Constructs a new PrimalTetrahedronAction.
void operator()(index_t v, index_t t, const Polyhedron &C) const
Callback called for each polyhedron.
Adapter class used internally to implement for_each_primal_triangle()
void operator()(index_t iv1, index_t f, const Polygon &P) const
Callback called for each primal triangle.
PrimalTriangleAction(const ACTION &do_it)
Creates a new PrimalTriangleAction that wraps a user ACTION instance.
Adapter class used internally to implement for_each_tetrahedron()
TetrahedronAction(const ACTION &do_it)
Creates a new TetrahedronAction that wraps a user ACTION instance.
bool facet_is_incident_to_vertex(const Polyhedron &C, Polyhedron::Corner &c, index_t t) const
Tests whether a Polyhedron facet is incident to a vertex.
void operator()(index_t v, index_t t, const Polyhedron &C) const
Callback called for each polyhedron.
Adapter class used internally to implement for_each_triangle().
void operator()(index_t v, index_t f, const Polygon &P) const
Callback called for each integration simplex.
TriangleAction(const ACTION &do_it)
Creates a new TriangleAction that wraps a user ACTION instance.
Adapter class used internally to implement for_each_volumetric_integration_simplex()
VolumetricIntegrationSimplexAction(const ACTION &do_it, bool visit_inner_tets=false, bool coherent_triangles=false)
Creates a new VolumetricIntegrationSimplexAction that wraps a user ACTION instance.
void operator()(index_t v, index_t t, const Polyhedron &C) const
Callback called for each polyhedron.
void move_to_first_corner_of_facet(const Polyhedron &C, Polyhedron::Corner &c, index_t center_vertex_id) const
Finds the first corner of a facet in a Polyhedron.
static bool symbolic_compare(const Vertex &p1, const Vertex &p2, index_t center_vertex_id)
Compares the symbolic information of two vertices in such a way that a global order is defined.
Computes the intersection between a surface (Mesh) and a Voronoi diagram (dual of a Delaunay).
Definition generic_RVD.h:78
GEOGen::Vertex Vertex
Internal representation of vertices.
Definition generic_RVD.h:99
index_t nb_facets_in_range() const
Gets the number of facets in the current range.
Polygon * intersect_cell_facet(index_t seed, Polygon &F)
Computes the intersection between the Voronoi cell of a seed and a facet.
void clip_by_cell(index_t seed, Polyhedron &C)
Computes the intersection between a Voronoi cell and a cell in plain mode.
void set_exact_predicates(bool x)
Specifies whether exact predicates should be used.
void for_each_primal_triangle(const PRIMTRIACTION &action)
Iterates on the triangles of the Restricted Delaunay Triangulation.
static coord_index_t dimension()
Gets the dimension.
Definition generic_RVD.h:87
Delaunay * delaunay()
Gets the Delaunay triangulation.
index_t find_seed_near_point(const double *p)
Finds a seed near a given point.
GEOGen::ConvexCell Polyhedron
Internal representation of volumetric cells.
GEOGen::Polygon Polygon
Internal representation of polygons.
void set_mesh(GEO::Mesh *mesh)
Sets the input mesh.
void for_each_polyhedron(const ACTION &action)
Iterates on the polyhedra of this RVD.
void compute_volumetric_with_cnx_priority(const ACTION &action)
Low-level API of Restricted Voronoi Diagram traversal with connected components priority.
void for_each_triangle(const TRIACTION &action)
Iterates on the facets of this RVD, triangulated on the fly.
const Polyhedron & current_polyhedron() const
Gets the current cell.
void clip_by_plane(Polyhedron &C, index_t i, index_t j)
Computes the intersection between a Voronoi cell and a half-space determined by a bisector.
void for_each_tetrahedron(const ACTION &action)
Iterates on the polyhedra of this RVD decomposed on the fly into tetrahedra.
index_t current_seed() const
Gets the index of the Delaunay vertex currently processed.
void clip_by_cell(index_t i, Polygon *&ping, Polygon *&pong)
Computes the intersection between a Voronoi cell and a polygon.
bool symbolic() const
Tests whether symbolic mode is active.
void for_each_border_halfedge(const BOACTION &action)
Iterates on the halfedges on the borders of the restricted Voronoi cells that are on the boundary of ...
void for_each_halfedge(const HEACTION &action)
Iterates on the halfedges on the borders of the restricted Voronoi cells.
void compute_volumetric(const ACTION &action)
Low-level API of Restricted Voronoi Diagram traversal .
index_t current_connected_component() const
Gets the index of the current connected component.
GEO::Mesh * mesh()
Gets the input mesh.
void clip_by_cell_SR(index_t seed, Polyhedron &C)
Computes the intersection between a Voronoi cell and a cell in radius-of-security mode.
void for_each_polygon(const ACTION &action)
Iterates on the facets of this RVD.
index_t current_facet() const
Gets the index of the mesh facet currently processed.
const Delaunay * delaunay() const
Gets the Delaunay triangulation.
const Polygon & current_polygon() const
Gets the current polygon.
index_t current_tet() const
Gets the undex of the mesh tetrahedron currently processed.
void intersect_cell_cell(index_t seed, Polyhedron &C)
Computes the intersection between a Voronoi cell and a cell with radius of security or plain mode.
void clip_by_cell_SR(index_t i, Polygon *&ping, Polygon *&pong)
Computes the intersection between the Voronoi cell of a vertex and the Mesh 'ping'.
void get_neighbors(index_t v)
Caches the neighbors of a Delaunay vertex.
GEOGen::PointAllocator PointAllocator
Used to allocate the generated points.
Definition generic_RVD.h:94
void compute_volumetric_with_seeds_priority(const ACTION &action)
Low-level API of Restricted Voronoi Diagram traversal with seeds priority in volumetric mode.
void set_check_SR(bool x)
Specifies whether radius of security should be enforced.
PointAllocator * point_allocator()
Gets the PointAllocator.
RestrictedVoronoiDiagram(Delaunay *delaunay, GEO::Mesh *mesh)
Constructs a new RestrictedVoronoiDiagram.
bool connected_component_changed() const
Tests whether the current connected component changed.
void set_delaunay(Delaunay *delaunay)
Sets the Delaunay triangulation.
bool connected_components_priority() const
Tests whether connected components priority is set.
bool exact_predicates() const
Tests whether exact predicates are used.
index_t find_seed_near_facet(index_t f)
Finds a seed near a given facet.
signed_index_t get_facet_seed_connected_component(index_t f, index_t s) const
Gets the index of the connected component associated with a (facet,seed).
void swap_polygons(Polygon *&ping, Polygon *&pong)
Swaps two pointers between two polygons.
void set_connected_components_priority(bool x)
Sets traveral priority.
void for_each_primal_tetrahedron(const ACTION &action)
Iterates on the primal tetrahedra of this RVD.
void set_symbolic(bool x)
Sets symbolic mode.
void init_get_neighbors()
Creates the data structure for optimized get_neighbors() function.
bool facet_seed_is_visited(index_t f, index_t s) const
Tests whether a (facet,seed) couple was visited.
void compute_surfacic(const ACTION &action)
Low-level API of Restricted Voronoi Diagram traversal.
void set_facets_range(index_t facets_begin, index_t facets_end)
Sets the facets range.
void compute_surfacic_with_seeds_priority(const ACTION &action)
Low-level API of Restricted Voronoi Diagram traversal with seeds priority in surfacic mode.
index_t nb_tetrahedra_in_range() const
Gets the number of tetrahedra in the current range.
bool check_SR() const
Tests whether radius of security is enforced.
void compute_surfacic_with_cnx_priority(const ACTION &action)
Low-level API of Restricted Voronoi Diagram traversal with connected components priority.
const GEO::Mesh * mesh() const
Gets the input mesh.
index_t find_seed_near_tet(index_t t)
Finds a seed near a given tetrahedron.
void clip_by_plane(Polygon &ping, Polygon &pong, index_t i, index_t j)
Computes the intersection between a polygon and a half-space.
void for_each_volumetric_integration_simplex(const ACTION &action, bool visit_inner_tets=false, bool coherent_triangles=false)
Iterates on the polyhedra of this RVD decomposed on the fly into tetrahedra.
void set_tetrahedra_range(index_t tets_begin, index_t tets_end)
Sets the tetrahedra range.
A set of three integers that encodes the equation of a vertex in GenericVoronoiDiagram.
index_t nb_bisectors() const
Gets the number of bisectors in the symbolic representation.
index_t bisector(signed_index_t i) const
Gets a bisector.
Internal representation of vertices in GenericVoronoiDiagram.
const double * point() const
Gets the geometric location at this Vertex.
const SymbolicVertex & sym() const
Gets the symbolic representation.
signed_index_t adjacent_seed() const
Gets the adjacent seed.
signed_index_t adjacent_facet() const
Gets the adjacent facet.
bool check_flag(EdgeFlag f) const
Tests an EdgeFlag in this Vertex.
bool bind_if_is_defined(AttributesManager &manager, const std::string &name)
Binds this Attribute to an AttributesManager if it already exists in the AttributesManager.
Manages an attribute attached to a set of object.
Delaunay interface for NearestNeighbors search.
Definition delaunay_nn.h:63
NearestNeighborSearch * nn_search()
Gets the NearestNeighborSearch used internally.
Definition delaunay_nn.h:92
virtual void enlarge_neighborhood(index_t i, index_t nb)
Stores nb neighbors with vertex i.
Abstract interface for Delaunay triangulation in Nd.
Definition delaunay.h:71
signed_index_t cell_vertex(index_t c, index_t lv) const
Gets a vertex index by cell index and local vertex index.
Definition delaunay.h:365
virtual index_t nearest_vertex(const double *p) const
Computes the nearest vertex from a query point.
index_t nb_cells() const
Gets the number of cells.
Definition delaunay.h:319
void get_neighbors(index_t v, vector< index_t > &neighbors) const
Gets the one-ring neighbors of vertex v.
Definition delaunay.h:481
coord_index_t dimension() const
Gets the dimension of this Delaunay.
Definition delaunay.h:171
index_t cell_size() const
Gets the number of vertices in each cell.
Definition delaunay.h:180
index_t nb_vertices() const
Gets the number of vertices.
Definition delaunay.h:242
signed_index_t vertex_cell(index_t v) const
Gets an incident cell index by a vertex index.
Definition delaunay.h:449
index_t index(index_t c, signed_index_t v) const
Retrieves a local vertex index from cell index and global vertex index.
Definition delaunay.h:411
signed_index_t next_around_vertex(index_t c, index_t lv) const
Traverses the list of cells incident to a vertex.
Definition delaunay.h:465
const double * vertex_ptr(index_t i) const
Gets a pointer to a vertex by its global index.
Definition delaunay.h:233
index_t vertex(index_t f, index_t lv) const
Gets a vertex by facet and local vertex index.
Definition mesh.h:1054
AttributesManager & attributes() const
Gets the attributes manager.
Definition mesh.h:100
index_t nb() const
Gets the number of (sub-)elements.
Definition mesh.h:89
const double * point_ptr(index_t v) const
Gets a point.
Definition mesh.h:455
Represents a mesh.
Definition mesh.h:2701
virtual void get_nearest_neighbors(index_t nb_neighbors, const double *query_point, index_t *neighbors, double *neighbors_sq_dist) const =0
Finds the nearest neighbors of a point given by coordinates.
Vector with aligned memory allocation.
Definition memory.h:660
index_t size() const
Gets the number of elements.
Definition memory.h:706
Some utilities for implementing surfacic and volumetric restricted Voronoi diagrams.
std::stack< TetSeed > TetSeedStack
A stack of TetSeed.
std::stack< FacetSeed > FacetSeedStack
A stack of FacetSeed.
std::stack< index_t > SeedStack
A stack of seed indices (index_t).
Common include file, providing basic definitions. Should be included before anything else by all head...
Geometric functions in arbitrary dimension.
Classes for managing tuples of indices.
#define geo_dim_alignment(dim)
Gets a point alignment.
Definition memory.h:270
double distance2(const COORD_T *p1, const COORD_T *p2, coord_index_t dim)
Computes the squared distance between two nd points.
Definition geometry_nd.h:65
Global Vorpaline namespace.
index_t max_index_t()
Gets the maximum positive value of type index_t.
Definition numeric.h:334
void geo_argused(const T &)
Suppresses compiler warnings about unused parameters.
Definition argused.h:60
Types and functions for numbers manipulation.
Filtered exact predicates for restricted Voronoi diagrams.
Function and classes for process manipulation.
A (facet,seed) pair.