40#ifndef GEOGRAM_POINTS_KD_TREE
41#define GEOGRAM_POINTS_KD_TREE
79 const double* query_point,
81 double* neighbors_sq_dist
87 const double* query_point,
89 double* neighbors_sq_dist,
98 double* neighbors_sq_dist
132 double* user_neighbors_sq_dist_in,
134 double* work_neighbors_sq_dist_in
137 nb_neighbors_max(nb_neighbors_in),
138 neighbors(work_neighbors_in),
139 neighbors_sq_dist(work_neighbors_sq_dist_in),
140 user_neighbors(user_neighbors_in),
141 user_neighbors_sq_dist(user_neighbors_sq_dist_in),
146 for(
index_t i = 0; i <= nb_neighbors; ++i) {
148 neighbors_sq_dist[i] = Numeric::max_float64();
158 nb_neighbors == nb_neighbors_max ?
159 neighbors_sq_dist[nb_neighbors - 1] :
160 Numeric::max_float64()
174 index_t neighbor,
double sq_dist
177 sq_dist <= furthest_neighbor_sq_dist()
181 for(i=
int(nb_neighbors); i>0; --i) {
182 if(neighbors_sq_dist[i - 1] < sq_dist) {
185 neighbors[i] = neighbors[i - 1];
186 neighbors_sq_dist[i] = neighbors_sq_dist[i - 1];
189 neighbors[i] = neighbor;
190 neighbors_sq_dist[i] = sq_dist;
192 if(nb_neighbors < nb_neighbors_max) {
205 for(
index_t i=0; i<nb_neighbors_max; ++i) {
206 neighbors[i] = user_neighbors[i];
207 neighbors_sq_dist[i] = user_neighbors_sq_dist[i];
209 neighbors[nb_neighbors_max] =
index_t(-1);
210 neighbors_sq_dist[nb_neighbors_max] = Numeric::max_float64();
211 nb_neighbors = nb_neighbors_max;
221 for(
index_t i=0; i<nb_neighbors_max; ++i) {
222 user_neighbors[i] = neighbors[i];
223 user_neighbors_sq_dist[i] = neighbors_sq_dist[i];
297 double* bbox_min,
double* bbox_max,
298 double bbox_dist,
const double* query_point,
318 double* bbox_min,
double* bbox_max,
319 double& box_dist,
const double* query_point
366 double& splitting_val
386 const double* query_point,
400 double& minval,
double& maxval
402 minval = Numeric::max_float64();
403 maxval = Numeric::min_float64();
404 for(
index_t i = b; i < e; ++i) {
405 double val = point_ptr(point_index_[i])[coord];
406 minval = std::min(minval, val);
407 maxval = std::max(maxval, val);
420 double minval,maxval;
421 get_minmax(b,e,coord,minval,maxval);
422 return maxval - minval;
471 if(e - b <= MAX_LEAF_SIZE) {
476 max_node_index(2 * node_id, b, m),
477 max_node_index(2 * node_id + 1, m, e)
500 if(e - b <= MAX_LEAF_SIZE) {
503 index_t m = split_kd_node(node_index, b, e);
504 create_kd_tree_recursive(2 * node_index, b, m);
505 create_kd_tree_recursive(2 * node_index + 1, m, e);
531 double& splitting_val
588 double& splitting_val
604 double* bbox_min,
double* bbox_max
624 double* bbox_min,
double* bbox_max,
659 return (points_ + direct_index * stride_)[coord];
668 return splitting_coord_.size();
#define geo_debug_assert(x)
Verifies that a condition is met.
Implements NearestNeighborSearch using an Adaptive Kd-tree.
virtual void split_kd_node(index_t b, index_t e, double *bbox_min, double *bbox_max, index_t &m, coord_index_t &cut_dim, double &cut_val)
Computes and stores the splitting coordinate and splitting value of the node node_index,...
vector< index_t > node_m_
One per node, node splitting index.
double point_coord(int index, coord_index_t coord)
Gets a point coordinate by index and coordinate.
virtual index_t create_kd_tree_recursive(index_t b, index_t e, double *bbox_min, double *bbox_max)
Creates the subtree under a node.
index_t build_tree() override
Builds the tree.
vector< double > splitting_val_
One per node, splitting coordinate value.
virtual index_t new_node()
Creates a new node.
vector< index_t > node_right_child_
One per node, right child index.
AdaptiveKdTree(coord_index_t dim)
Creates a new BalancedKdTree.
vector< coord_index_t > splitting_coord_
One per node, splitting coordinate.
virtual void plane_split(index_t b, index_t e, coord_index_t coord, double val, index_t &br1, index_t &br2)
Reorders the points in a sequence in such a way that the specified coordinate in the beginning of the...
index_t nb_nodes() const
Gets the number of nodes.
void get_node(index_t n, index_t b, index_t e, index_t &left_child, index_t &right_child, coord_index_t &splitting_coord, index_t &m, double &splitting_val) const override
Gets all the attributes of a node.
Implements NearestNeighborSearch using a balanced Kd-tree.
void get_node(index_t n, index_t b, index_t e, index_t &left_child, index_t &right_child, coord_index_t &splitting_coord, index_t &m, double &splitting_val) const override
Gets all the attributes of a node.
void create_kd_tree_recursive(index_t node_index, index_t b, index_t e)
Creates the subtree under a node.
BalancedKdTree(coord_index_t dim)
Creates a new BalancedKdTree.
vector< coord_index_t > splitting_coord_
One per node, splitting coordinate.
~BalancedKdTree() override
BalancedKdTree destructor.
index_t split_kd_node(index_t node_index, index_t b, index_t e)
Computes and stores the splitting coordinate and splitting value of the node node_index,...
coord_index_t best_splitting_coord(index_t b, index_t e)
Computes the coordinate along which a point sequence will be split.
index_t build_tree() override
Builds the tree.
vector< double > splitting_val_
One per node, splitting coordinate value.
index_t m0_
Indices for multithreaded tree construction.
static index_t max_node_index(index_t node_id, index_t b, index_t e)
Returns the maximum node index in subtree.
Base class for all Kd-tree implementations.
index_t root() const
Gets the root node.
void get_nearest_neighbors(index_t nb_neighbors, index_t query_point, index_t *neighbors, double *neighbors_sq_dist) const override
Finds the nearest neighbors of a point given by coordinates.
bool stride_supported() const override
Tests whether the stride variant of set_points() is supported.
virtual index_t build_tree()=0
Builds the tree.
void get_minmax(index_t b, index_t e, coord_index_t coord, double &minval, double &maxval) const
Computes the minimum and maximum point coordinates along a coordinate.
virtual void get_nearest_neighbors_recursive(index_t node_index, index_t b, index_t e, double *bbox_min, double *bbox_max, double bbox_dist, const double *query_point, NearestNeighbors &neighbors) const
The recursive function to implement KdTree traversal and nearest neighbors computation.
void set_points(index_t nb_points, const double *points, index_t stride) override
Sets the points and create the search data structure.
void get_nearest_neighbors(index_t nb_neighbors, const double *query_point, index_t *neighbors, double *neighbors_sq_dist, KeepInitialValues) const override
Finds the nearest neighbors of a point given by coordinates.
KdTree(coord_index_t dim)
KdTree constructor.
void set_points(index_t nb_points, const double *points) override
Sets the points and create the search data structure.
double spread(index_t b, index_t e, coord_index_t coord) const
Computes the extent of a point sequence along a given coordinate.
void init_bbox_and_bbox_dist_for_traversal(double *bbox_min, double *bbox_max, double &box_dist, const double *query_point) const
Initializes bounding box and box distance for Kd-Tree traversal.
virtual void get_nearest_neighbors_leaf(index_t node_index, index_t b, index_t e, const double *query_point, NearestNeighbors &neighbors) const
The recursive function to implement KdTree traversal and nearest neighbors computation in a leaf.
void get_nearest_neighbors(index_t nb_neighbors, const double *query_point, index_t *neighbors, double *neighbors_sq_dist) const override
Finds the nearest neighbors of a point given by coordinates.
virtual void get_node(index_t n, index_t b, index_t e, index_t &left_child, index_t &right_child, coord_index_t &splitting_coord, index_t &m, double &splitting_val) const =0
Gets all the attributes of a node.
~KdTree() override
KdTree destructor.
Abstract interface for nearest neighbor search algorithms.
Vector with aligned memory allocation.
Common include file, providing basic definitions. Should be included before anything else by all head...
Global Vorpaline namespace.
geo_index_t index_t
The type for storing and manipulating indices.
geo_coord_index_t coord_index_t
The type for storing coordinate indices, and iterating on the coordinates of a point.
Abstract interface for nearest neighbor searching.
The context for traversing a KdTree.
void copy_from_user()
Copies the user neighbors and distances into the work zone and initializes nb_neighbors to max_nb_nei...
double furthest_neighbor_sq_dist() const
Gets the squared distance to the furthest neighbor.
index_t nb_neighbors
Current number of neighbors.
index_t * neighbors
Internal array of neighbors.
index_t nb_neighbors_max
Maximum number of neighbors.
double * user_neighbors_sq_dist
User-provided array of neighbors squared distances.
void insert(index_t neighbor, double sq_dist)
Inserts a new neighbor.
size_t nb_visited
Number of points visited during traversal.
double * neighbors_sq_dist
Internal squared distance to neigbors.
index_t * user_neighbors
User-provided array of neighbors.
NearestNeighbors(index_t nb_neighbors_in, index_t *user_neighbors_in, double *user_neighbors_sq_dist_in, index_t *work_neighbors_in, double *work_neighbors_sq_dist_in)
Creates a new NearestNeighbors.
void copy_to_user()
Copies the found nearest neighbors from the work zone to the user neighbors and squared distance arra...
A structure to discriminate between the two versions of get_nearest_neighbors()