Graphite Version 3
An experimental 3D geometry processing program
Loading...
Searching...
No Matches
kd_tree.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2000-2022 Inria
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * * Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * * Neither the name of the ALICE Project-Team nor the names of its
14 * contributors may be used to endorse or promote products derived from this
15 * software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
21 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Contact: Bruno Levy
30 *
31 * https://www.inria.fr/fr/bruno-levy
32 *
33 * Inria,
34 * Domaine de Voluceau,
35 * 78150 Le Chesnay - Rocquencourt
36 * FRANCE
37 *
38 */
39
40#ifndef GEOGRAM_POINTS_KD_TREE
41#define GEOGRAM_POINTS_KD_TREE
42
45#include <algorithm>
46
52namespace GEO {
53
57 class GEOGRAM_API KdTree : public NearestNeighborSearch {
58 public:
64
66 void set_points(index_t nb_points, const double* points) override;
67
69 bool stride_supported() const override;
70
73 index_t nb_points, const double* points, index_t stride
74 ) override;
75
78 index_t nb_neighbors,
79 const double* query_point,
80 index_t* neighbors,
81 double* neighbors_sq_dist
82 ) const override;
83
86 index_t nb_neighbors,
87 const double* query_point,
88 index_t* neighbors,
89 double* neighbors_sq_dist,
91 ) const override;
92
95 index_t nb_neighbors,
96 index_t query_point,
97 index_t* neighbors,
98 double* neighbors_sq_dist
99 ) const override;
100
101 /**********************************************************************/
102
109
130 index_t nb_neighbors_in,
131 index_t* user_neighbors_in,
132 double* user_neighbors_sq_dist_in,
133 index_t* work_neighbors_in,
134 double* work_neighbors_sq_dist_in
135 ) :
136 nb_neighbors(0),
137 nb_neighbors_max(nb_neighbors_in),
138 neighbors(work_neighbors_in),
139 neighbors_sq_dist(work_neighbors_sq_dist_in),
140 user_neighbors(user_neighbors_in),
141 user_neighbors_sq_dist(user_neighbors_sq_dist_in),
142 nb_visited(0)
143 {
144 // Yes, '<=' because we got space for n+1 neigbors
145 // in the work arrays.
146 for(index_t i = 0; i <= nb_neighbors; ++i) {
147 neighbors[i] = index_t(-1);
148 neighbors_sq_dist[i] = Numeric::max_float64();
149 }
150 }
151
157 return
158 nb_neighbors == nb_neighbors_max ?
159 neighbors_sq_dist[nb_neighbors - 1] :
160 Numeric::max_float64()
161 ;
162 }
163
173 void insert(
174 index_t neighbor, double sq_dist
175 ) {
177 sq_dist <= furthest_neighbor_sq_dist()
178 );
179
180 int i;
181 for(i=int(nb_neighbors); i>0; --i) {
182 if(neighbors_sq_dist[i - 1] < sq_dist) {
183 break;
184 }
185 neighbors[i] = neighbors[i - 1];
186 neighbors_sq_dist[i] = neighbors_sq_dist[i - 1];
187 }
188
189 neighbors[i] = neighbor;
190 neighbors_sq_dist[i] = sq_dist;
191
192 if(nb_neighbors < nb_neighbors_max) {
193 ++nb_neighbors;
194 }
195 }
196
205 for(index_t i=0; i<nb_neighbors_max; ++i) {
206 neighbors[i] = user_neighbors[i];
207 neighbors_sq_dist[i] = user_neighbors_sq_dist[i];
208 }
209 neighbors[nb_neighbors_max] = index_t(-1);
210 neighbors_sq_dist[nb_neighbors_max] = Numeric::max_float64();
211 nb_neighbors = nb_neighbors_max;
212 }
213
221 for(index_t i=0; i<nb_neighbors_max; ++i) {
222 user_neighbors[i] = neighbors[i];
223 user_neighbors_sq_dist[i] = neighbors_sq_dist[i];
224 }
225 }
226
229
232
238
244
250
257
263 };
264
296 index_t node_index, index_t b, index_t e,
297 double* bbox_min, double* bbox_max,
298 double bbox_dist, const double* query_point,
299 NearestNeighbors& neighbors
300 ) const;
301
318 double* bbox_min, double* bbox_max,
319 double& box_dist, const double* query_point
320 ) const;
321
326 index_t root() const {
327 return root_;
328 }
329
330 protected:
334 static constexpr index_t MAX_LEAF_SIZE = 16;
335
340 virtual index_t build_tree() = 0 ;
341
361 virtual void get_node(
362 index_t n, index_t b, index_t e,
363 index_t& left_child, index_t& right_child,
364 coord_index_t& splitting_coord,
365 index_t& m,
366 double& splitting_val
367 ) const = 0;
368
369
370
385 index_t node_index, index_t b, index_t e,
386 const double* query_point,
387 NearestNeighbors& neighbors
388 ) const;
389
399 index_t b, index_t e, coord_index_t coord,
400 double& minval, double& maxval
401 ) const {
402 minval = Numeric::max_float64();
403 maxval = Numeric::min_float64();
404 for(index_t i = b; i < e; ++i) {
405 double val = point_ptr(point_index_[i])[coord];
406 minval = std::min(minval, val);
407 maxval = std::max(maxval, val);
408 }
409 }
410
419 double spread(index_t b, index_t e, coord_index_t coord) const {
420 double minval,maxval;
421 get_minmax(b,e,coord,minval,maxval);
422 return maxval - minval;
423 }
424
428 ~KdTree() override;
429
430 protected:
431 vector<index_t> point_index_;
432 vector<double> bbox_min_;
433 vector<double> bbox_max_;
434 index_t root_;
435 };
436
437 /*********************************************************************/
438
447 class GEOGRAM_API BalancedKdTree : public KdTree {
448 public:
454
455 protected:
459 ~BalancedKdTree() override;
460
469 index_t node_id, index_t b, index_t e
470 ) {
471 if(e - b <= MAX_LEAF_SIZE) {
472 return node_id;
473 }
474 index_t m = b + (e - b) / 2;
475 return std::max(
476 max_node_index(2 * node_id, b, m),
477 max_node_index(2 * node_id + 1, m, e)
478 );
479 }
480
488
498 index_t node_index, index_t b, index_t e
499 ) {
500 if(e - b <= MAX_LEAF_SIZE) {
501 return;
502 }
503 index_t m = split_kd_node(node_index, b, e);
504 create_kd_tree_recursive(2 * node_index, b, m);
505 create_kd_tree_recursive(2 * node_index + 1, m, e);
506 }
507
519 index_t node_index, index_t b, index_t e
520 );
521
523 index_t build_tree() override;
524
527 index_t n, index_t b, index_t e,
528 index_t& left_child, index_t& right_child,
529 coord_index_t& splitting_coord,
530 index_t& m,
531 double& splitting_val
532 ) const override;
533
534 protected:
535
540
545
549 index_t m0_, m1_, m2_, m3_, m4_, m5_, m6_, m7_, m8_;
550 };
551
552 /*********************************************************************/
553
570 class GEOGRAM_API AdaptiveKdTree : public KdTree {
571 public:
577
578 protected:
580 index_t build_tree() override;
581
584 index_t n, index_t b, index_t e,
585 index_t& left_child, index_t& right_child,
586 coord_index_t& splitting_coord,
587 index_t& m,
588 double& splitting_val
589 ) const override;
590
603 index_t b, index_t e,
604 double* bbox_min, double* bbox_max
605 );
606
622 virtual void split_kd_node(
623 index_t b, index_t e,
624 double* bbox_min, double* bbox_max,
625 index_t& m, coord_index_t& cut_dim, double& cut_val
626 );
627
642 virtual void plane_split(
643 index_t b, index_t e, coord_index_t coord, double val,
644 index_t& br1, index_t& br2
645 );
646
653 double point_coord(int index, coord_index_t coord) {
654 geo_debug_assert(index >= 0);
655 geo_debug_assert(index_t(index) < nb_points());
656 geo_debug_assert(coord < dimension());
657 index_t direct_index = point_index_[index_t(index)];
658 geo_debug_assert(direct_index < nb_points());
659 return (points_ + direct_index * stride_)[coord];
660 }
661
662
668 return splitting_coord_.size();
669 }
670
675 virtual index_t new_node();
676
677 protected:
682
687
695
701 };
702
703 /*********************************************************************/
704}
705
706#endif
#define geo_debug_assert(x)
Verifies that a condition is met.
Definition assert.h:196
Implements NearestNeighborSearch using an Adaptive Kd-tree.
Definition kd_tree.h:570
virtual void split_kd_node(index_t b, index_t e, double *bbox_min, double *bbox_max, index_t &m, coord_index_t &cut_dim, double &cut_val)
Computes and stores the splitting coordinate and splitting value of the node node_index,...
vector< index_t > node_m_
One per node, node splitting index.
Definition kd_tree.h:694
double point_coord(int index, coord_index_t coord)
Gets a point coordinate by index and coordinate.
Definition kd_tree.h:653
virtual index_t create_kd_tree_recursive(index_t b, index_t e, double *bbox_min, double *bbox_max)
Creates the subtree under a node.
index_t build_tree() override
Builds the tree.
vector< double > splitting_val_
One per node, splitting coordinate value.
Definition kd_tree.h:686
virtual index_t new_node()
Creates a new node.
vector< index_t > node_right_child_
One per node, right child index.
Definition kd_tree.h:700
AdaptiveKdTree(coord_index_t dim)
Creates a new BalancedKdTree.
vector< coord_index_t > splitting_coord_
One per node, splitting coordinate.
Definition kd_tree.h:681
virtual void plane_split(index_t b, index_t e, coord_index_t coord, double val, index_t &br1, index_t &br2)
Reorders the points in a sequence in such a way that the specified coordinate in the beginning of the...
index_t nb_nodes() const
Gets the number of nodes.
Definition kd_tree.h:667
void get_node(index_t n, index_t b, index_t e, index_t &left_child, index_t &right_child, coord_index_t &splitting_coord, index_t &m, double &splitting_val) const override
Gets all the attributes of a node.
Implements NearestNeighborSearch using a balanced Kd-tree.
Definition kd_tree.h:447
void get_node(index_t n, index_t b, index_t e, index_t &left_child, index_t &right_child, coord_index_t &splitting_coord, index_t &m, double &splitting_val) const override
Gets all the attributes of a node.
void create_kd_tree_recursive(index_t node_index, index_t b, index_t e)
Creates the subtree under a node.
Definition kd_tree.h:497
BalancedKdTree(coord_index_t dim)
Creates a new BalancedKdTree.
vector< coord_index_t > splitting_coord_
One per node, splitting coordinate.
Definition kd_tree.h:539
~BalancedKdTree() override
BalancedKdTree destructor.
index_t split_kd_node(index_t node_index, index_t b, index_t e)
Computes and stores the splitting coordinate and splitting value of the node node_index,...
coord_index_t best_splitting_coord(index_t b, index_t e)
Computes the coordinate along which a point sequence will be split.
index_t build_tree() override
Builds the tree.
vector< double > splitting_val_
One per node, splitting coordinate value.
Definition kd_tree.h:544
index_t m0_
Indices for multithreaded tree construction.
Definition kd_tree.h:549
static index_t max_node_index(index_t node_id, index_t b, index_t e)
Returns the maximum node index in subtree.
Definition kd_tree.h:468
Base class for all Kd-tree implementations.
Definition kd_tree.h:57
index_t root() const
Gets the root node.
Definition kd_tree.h:326
void get_nearest_neighbors(index_t nb_neighbors, index_t query_point, index_t *neighbors, double *neighbors_sq_dist) const override
Finds the nearest neighbors of a point given by coordinates.
bool stride_supported() const override
Tests whether the stride variant of set_points() is supported.
virtual index_t build_tree()=0
Builds the tree.
void get_minmax(index_t b, index_t e, coord_index_t coord, double &minval, double &maxval) const
Computes the minimum and maximum point coordinates along a coordinate.
Definition kd_tree.h:398
virtual void get_nearest_neighbors_recursive(index_t node_index, index_t b, index_t e, double *bbox_min, double *bbox_max, double bbox_dist, const double *query_point, NearestNeighbors &neighbors) const
The recursive function to implement KdTree traversal and nearest neighbors computation.
void set_points(index_t nb_points, const double *points, index_t stride) override
Sets the points and create the search data structure.
void get_nearest_neighbors(index_t nb_neighbors, const double *query_point, index_t *neighbors, double *neighbors_sq_dist, KeepInitialValues) const override
Finds the nearest neighbors of a point given by coordinates.
KdTree(coord_index_t dim)
KdTree constructor.
void set_points(index_t nb_points, const double *points) override
Sets the points and create the search data structure.
double spread(index_t b, index_t e, coord_index_t coord) const
Computes the extent of a point sequence along a given coordinate.
Definition kd_tree.h:419
void init_bbox_and_bbox_dist_for_traversal(double *bbox_min, double *bbox_max, double &box_dist, const double *query_point) const
Initializes bounding box and box distance for Kd-Tree traversal.
virtual void get_nearest_neighbors_leaf(index_t node_index, index_t b, index_t e, const double *query_point, NearestNeighbors &neighbors) const
The recursive function to implement KdTree traversal and nearest neighbors computation in a leaf.
void get_nearest_neighbors(index_t nb_neighbors, const double *query_point, index_t *neighbors, double *neighbors_sq_dist) const override
Finds the nearest neighbors of a point given by coordinates.
virtual void get_node(index_t n, index_t b, index_t e, index_t &left_child, index_t &right_child, coord_index_t &splitting_coord, index_t &m, double &splitting_val) const =0
Gets all the attributes of a node.
~KdTree() override
KdTree destructor.
Abstract interface for nearest neighbor search algorithms.
Definition nn_search.h:69
Vector with aligned memory allocation.
Definition memory.h:660
Common include file, providing basic definitions. Should be included before anything else by all head...
Global Vorpaline namespace.
geo_index_t index_t
The type for storing and manipulating indices.
Definition numeric.h:329
geo_coord_index_t coord_index_t
The type for storing coordinate indices, and iterating on the coordinates of a point.
Definition numeric.h:363
Abstract interface for nearest neighbor searching.
The context for traversing a KdTree.
Definition kd_tree.h:108
void copy_from_user()
Copies the user neighbors and distances into the work zone and initializes nb_neighbors to max_nb_nei...
Definition kd_tree.h:204
double furthest_neighbor_sq_dist() const
Gets the squared distance to the furthest neighbor.
Definition kd_tree.h:156
index_t nb_neighbors
Current number of neighbors.
Definition kd_tree.h:228
index_t * neighbors
Internal array of neighbors.
Definition kd_tree.h:237
index_t nb_neighbors_max
Maximum number of neighbors.
Definition kd_tree.h:231
double * user_neighbors_sq_dist
User-provided array of neighbors squared distances.
Definition kd_tree.h:256
void insert(index_t neighbor, double sq_dist)
Inserts a new neighbor.
Definition kd_tree.h:173
size_t nb_visited
Number of points visited during traversal.
Definition kd_tree.h:262
double * neighbors_sq_dist
Internal squared distance to neigbors.
Definition kd_tree.h:243
index_t * user_neighbors
User-provided array of neighbors.
Definition kd_tree.h:249
NearestNeighbors(index_t nb_neighbors_in, index_t *user_neighbors_in, double *user_neighbors_sq_dist_in, index_t *work_neighbors_in, double *work_neighbors_sq_dist_in)
Creates a new NearestNeighbors.
Definition kd_tree.h:129
void copy_to_user()
Copies the found nearest neighbors from the work zone to the user neighbors and squared distance arra...
Definition kd_tree.h:220
A structure to discriminate between the two versions of get_nearest_neighbors()
Definition nn_search.h:141