Graphite Version 3
An experimental 3D geometry processing program
Loading...
Searching...
No Matches
rationalg.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2000-2023 Inria
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * * Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * * Neither the name of the ALICE Project-Team nor the names of its
14 * contributors may be used to endorse or promote products derived from this
15 * software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
21 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Contact: Bruno Levy
30 *
31 * https://www.inria.fr/fr/bruno-levy
32 *
33 * Inria,
34 * Domaine de Voluceau,
35 * 78150 Le Chesnay - Rocquencourt
36 * FRANCE
37 *
38 */
39
40#ifndef GEOGRAM_BASIC_RATIONALG
41#define GEOGRAM_BASIC_RATIONALG
42
44
50namespace GEO {
51
59 template <class T> class rationalg {
60 public:
61 typedef T value_type;
62
63 rationalg() = default;
64
69 explicit rationalg(double x) : num_(x), denom_(1.0) {
70 }
71
76 explicit rationalg(const T& x) : num_(x), denom_(1.0) {
77 }
78
84 explicit rationalg(T&& x) : num_(x), denom_(1.0) {
85 }
86
92 explicit rationalg(double num, double denom)
93 : num_(num), denom_(denom) {
94 }
95
101 explicit rationalg(const T& num, const T& denom)
102 : num_(num), denom_(denom) {
103 }
104
111 explicit rationalg(
112 T&& num, T&& denom
113 ) : num_(num), denom_(denom) {
114 }
115
120 rationalg(const rationalg<T>& rhs) = default;
121
126 rationalg(rationalg<T>&& rhs) = default;
127
133 rationalg<T>& operator= (const rationalg<T>& rhs) = default;
134
141
146 const T& num() const {
147 return num_;
148 }
149
154 const T& denom() const {
155 return denom_;
156 }
157
162 T& num() {
163 return num_;
164 }
165
170 T& denom() {
171 return denom_;
172 }
173
182
183 /********************************************************************/
184
191 if(has_same_denom(rhs)) {
192 num_ += rhs.num_;
193 } else {
194 num_ = num_ * rhs.denom_ + rhs.num_ * denom_;
195 denom_ *= rhs.denom_;
196 }
197 return *this;
198 }
199
206 if(has_same_denom(rhs)) {
207 num_ -= rhs.num_;
208 } else {
209 num_ = num_ * rhs.denom_ - rhs.num_ * denom_;
210 denom_ *= rhs.denom_;
211 }
212 return *this;
213 }
214
221 num_ *= rhs.num_;
222 denom_ *= rhs.denom_;
223 return *this;
224 }
225
232 num_ *= rhs.denom_;
233 denom_ *= rhs.num_;
234 return *this;
235 }
236
243 num_ += denom_ * T(rhs);
244 return *this;
245 }
246
253 num_ -= denom_ * T(rhs);
254 return *this;
255 }
256
266 num_ *= T(rhs);
267 return *this;
268 }
269
279 denom_ *= T(rhs);
280 return *this;
281 }
282
283 /********************************************************************/
284
291 if(has_same_denom(rhs)) {
292 return rationalg(
293 num_ + rhs.num_,
294 denom_
295 );
296 }
297 return rationalg(
298 num_ * rhs.denom_ + rhs.num_ * denom_,
299 denom_ * rhs.denom_
300 );
301 }
302
310 if(has_same_denom(rhs)) {
311 return rationalg(
312 num_ - rhs.num_,
313 denom_
314 );
315 }
316 return rationalg(
317 num_ * rhs.denom_ - rhs.num_ * denom_,
318 denom_ * rhs.denom_
319 );
320 }
321
329 return rationalg(
330 num_ * rhs.num_,
331 denom_ * rhs.denom_
332 );
333 }
334
342 return rationalg(
343 num_ * rhs.denom_,
344 denom_ * rhs.num_
345 );
346 }
347
348
354 rationalg<T> operator+ (double rhs) const {
355 return rationalg(
356 num_ + T(rhs) * denom_,
357 denom_
358 );
359 }
360
366 rationalg<T> operator- (double rhs) const {
367 return rationalg(
368 num_ - T(rhs) * denom_,
369 denom_
370 );
371 }
372
378 rationalg<T> operator* (double rhs) const {
379 return rationalg(
380 num_ * T(rhs),
381 denom_
382 );
383 }
384
390 rationalg<T> operator/ (double rhs) const {
391 return rationalg(
392 num_,
393 denom_* T(rhs)
394 );
395 }
396
397 /********************************************************************/
398
404 return rationalg(
405 -num_,
406 denom_
407 );
408 }
409
410 /********************************************************************/
411
416 Sign sign() const {
417 geo_debug_assert(denom_.sign() != ZERO);
418 return Sign(num_.sign() * denom_.sign());
419 }
420
421 /********************************************************************/
422
427 Sign compare(const rationalg<T>& rhs) const {
428 if(sign() != rhs.sign()){
429 return Sign(sign()-rhs.sign());
430 }
431 if(has_same_denom(rhs)) {
432 return Sign(num_.compare(rhs.num_) * denom_.sign());
433 }
434 return Sign(
435 (num_ * rhs.denom_).compare(rhs.num_ * denom_) *
436 denom_.sign() * rhs.denom_.sign()
437 );
438 }
439
444 Sign compare(double rhs) const {
445 return Sign(
446 num_.compare(T(rhs)*denom_) * denom_.sign()
447 );
448 }
449
457 bool operator> (const rationalg<T>& rhs) const {
458 return (int(compare(rhs))>0);
459 }
460
468 bool operator>= (const rationalg<T>& rhs) const {
469 return (int(compare(rhs))>=0);
470 }
471
479 bool operator< (const rationalg<T>& rhs) const {
480 return (int(compare(rhs))<0);
481 }
482
490 bool operator<= (const rationalg<T>& rhs) const {
491 return (int(compare(rhs))<=0);
492 }
493
501 bool operator> (double rhs) const {
502 return (int(compare(rhs))>0);
503 }
504
512 bool operator>= (double rhs) const {
513 return (int(compare(rhs))>=0);
514 }
515
523 bool operator< (double rhs) const {
524 return (int(compare(rhs))<0);
525 }
526
534 bool operator<= (double rhs) const {
535 return (int(compare(rhs))<=0);
536 }
537
538 /********************************************************************/
539
545 double estimate() const {
546 return num_.estimate() / denom_.estimate();
547 }
548
549 protected:
554 void copy(const rationalg<T>& rhs) {
555 num_ = rhs.num_;
556 denom_ = rhs.denom_;
557 }
558
569 bool has_same_denom(const rationalg<T>& rhs) const {
570 return denom_ == rhs.denom_;
571 }
572
573 private:
574 T num_;
575 T denom_;
576 };
577
578 /**************************************************************************/
579
587 template <class T>
588 inline rationalg<T> operator+ (double a, const rationalg<T>& b) {
589 return b + a;
590 }
591
599 template <class T>
600 inline rationalg<T> operator- (double a, const rationalg<T>& b) {
601 rationalg<T> result = b - a;
602 result.num().negate();
603 return result;
604 }
605
613 template <class T>
614 inline rationalg<T> operator* (double a, const rationalg<T>& b) {
615 return b * a;
616 }
617
625 template <class T>
626 inline rationalg<T> operator/ (double a, const rationalg<T>& b) {
627 return rationalg<T>(
628 T(a)*b.denom(),
629 b.num()
630 );
631 }
632
641 template <class T>
642 inline bool operator== (const rationalg<T>& a, const rationalg<T>& b) {
643 return (a.compare(b) == ZERO);
644 }
645
654 template <class T>
655 inline bool operator== (const rationalg<T>& a, double b) {
656 return (a.compare(b) == ZERO);
657 }
658
667 template <class T>
668 inline bool operator== (double a, const rationalg<T>& b) {
669 return (b.compare(a) == ZERO);
670 }
671
680 template <class T>
681 inline bool operator!= (const rationalg<T>& a, const rationalg<T>& b) {
682 return (a.compare(b) != ZERO);
683 }
684
693 template <class T>
694 inline bool operator!= (const rationalg<T>& a, double b) {
695 return (a.compare(b) != ZERO);
696 }
697
706 template <class T>
707 inline bool operator!= (double a, const rationalg<T>& b) {
708 return (b.compare(a) != ZERO);
709 }
710
711 /**************************************************************************/
712
718 template <class T> inline Sign geo_sgn(const rationalg<T>& x) {
719 return x.sign();
720 }
721
729 template <class T> inline Sign geo_cmp(
730 const rationalg<T>& a, const rationalg<T>& b
731 ) {
732 return a.compare(b);
733 }
734
735 namespace Numeric {
736
737 template <class T> inline void optimize_number_representation(
738 rationalg<T>& x
739 ) {
740 x.optimize();
741 }
742
743 }
744
745 /**************************************************************************/
746
747}
748
749#endif
#define geo_debug_assert(x)
Verifies that a condition is met.
Definition assert.h:196
rationalg (generic rational) is used to compute the sign of rational fractions exactly.
Definition rationalg.h:59
rationalg< T > operator-() const
Computes the opposite of this rationalg.
Definition rationalg.h:403
rationalg(const T &x)
Constructs a new rationalg from an T.
Definition rationalg.h:76
Sign sign() const
Gets the sign of a rationalg.
Definition rationalg.h:416
rationalg(const T &num, const T &denom)
Constructs a new rationalg from two T.
Definition rationalg.h:101
bool operator<=(const rationalg< T > &rhs) const
Compares this rationalg with another one.
Definition rationalg.h:490
bool operator>=(const rationalg< T > &rhs) const
Compares this rationalg with another one.
Definition rationalg.h:468
rationalg< T > operator*(const rationalg< T > &rhs) const
Computes the product between two rationalgs.
Definition rationalg.h:328
T & num()
gets the numerator.
Definition rationalg.h:162
rationalg< T > & operator/=(const rationalg< T > &rhs)
Divides this rationalg by a rationalg.
Definition rationalg.h:231
rationalg< T > & operator+=(const rationalg< T > &rhs)
Adds a rationalg to this rationalg.
Definition rationalg.h:190
rationalg< T > & operator*=(const rationalg< T > &rhs)
Multiplies this rationalg by a rationalg.
Definition rationalg.h:220
rationalg< T > operator/(const rationalg< T > &rhs) const
Computes the ratio between two rationalgs.
Definition rationalg.h:341
rationalg(T &&x)
Constructs a new rationalg from an T with move semantics.
Definition rationalg.h:84
const T & num() const
gets the numerator.
Definition rationalg.h:146
Sign compare(double rhs) const
Compares a rationalg with a double.
Definition rationalg.h:444
T & denom()
gets the denominator.
Definition rationalg.h:170
void copy(const rationalg< T > &rhs)
Copies a rational into this one.
Definition rationalg.h:554
rationalg< T > operator+(const rationalg< T > &rhs) const
Computes the sum of two rationalgs.
Definition rationalg.h:290
rationalg(double x)
Constructs a new rationalg from a double.
Definition rationalg.h:69
rationalg< T > & operator=(const rationalg< T > &rhs)=default
Assignment operator.
rationalg(T &&num, T &&denom)
Constructs a new rationalg from two T with move semantics.
Definition rationalg.h:111
bool has_same_denom(const rationalg< T > &rhs) const
Tests whether a rationalg has trivially the same denominator this rationalg.
Definition rationalg.h:569
rationalg< T > & operator-=(const rationalg< T > &rhs)
Subtracts a rationalg to this rationalg.
Definition rationalg.h:205
Sign compare(const rationalg< T > &rhs) const
Compares two rationalg.
Definition rationalg.h:427
double estimate() const
Computes an approximation of the stored value in this rational.
Definition rationalg.h:545
rationalg(rationalg< T > &&rhs)=default
Move-constructor.
rationalg(double num, double denom)
Constructs a new rationalg from two doubles.
Definition rationalg.h:92
bool operator>(const rationalg< T > &rhs) const
Compares this rationalg with another one.
Definition rationalg.h:457
const T & denom() const
gets the denominator.
Definition rationalg.h:154
rationalg(const rationalg< T > &rhs)=default
Copy-constructor.
void optimize()
Optimizes the internal representation without changing the represented value.
Definition rationalg.h:178
bool operator<(const rationalg< T > &rhs) const
Compares this rationalg with another one.
Definition rationalg.h:479
Common include file, providing basic definitions. Should be included before anything else by all head...
void optimize_number_representation(T &x)
place holder for optimizing internal number representation
Definition numeric.h:267
Global Vorpaline namespace.
Quaternion operator-(const Quaternion &a, const Quaternion &b)
Computes the difference between two Quaternion.
Definition quaternion.h:252
Sign geo_sgn(const T &x)
Gets the sign of a value.
Definition numeric.h:90
Sign
Integer constants that represent the sign of a value.
Definition numeric.h:68
@ ZERO
Definition numeric.h:72
Sign geo_cmp(const T &a, const T &b)
Compares two values.
Definition numeric.h:106
Quaternion operator+(const Quaternion &a, const Quaternion &b)
Computes the sum of two Quaternion.
Definition quaternion.h:239
vecng< DIM, FT > operator*(const Matrix< DIM, FT > &M, const vecng< DIM, FT > &x)
Computes a matrix vector product.
Definition matrix.h:536