Graphite Version 3
An experimental 3D geometry processing program
Loading...
Searching...
No Matches
vecg.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2000-2022 Inria
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * * Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * * Neither the name of the ALICE Project-Team nor the names of its
14 * contributors may be used to endorse or promote products derived from this
15 * software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
21 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Contact: Bruno Levy
30 *
31 * https://www.inria.fr/fr/bruno-levy
32 *
33 * Inria,
34 * Domaine de Voluceau,
35 * 78150 Le Chesnay - Rocquencourt
36 * FRANCE
37 *
38 */
39
40#ifndef GEOGRAM_BASIC_VECG
41#define GEOGRAM_BASIC_VECG
42
48#include <initializer_list>
49
50#include <iostream>
51#include <cfloat>
52#include <cmath>
53
59namespace GEO {
60
69 template <index_t DIM, class T>
70 class vecng {
71 public:
73 static constexpr index_t dim = DIM;
74
77
79 typedef T value_type;
80
86 for(index_t i = 0; i < DIM; i++) {
87 data_[i] = T(0);
88 }
89 }
90
91 // This one should never be called :
92 // a template constructor cannot be a copy constructor
93
103 template <class T2>
104 explicit vecng(const vecng<DIM, T2>& v) {
105 for(index_t i = 0; i < DIM; i++) {
106 data_[i] = T(v[i]);
107 }
108 }
109
110 // to avoid compilation problems
111 template <class T2, index_t DIM2>
112 explicit vecng(
113 const vecng<DIM2, T2>& v
114 ) {
115 geo_debug_assert(DIM2 == DIM);
116 for(index_t i = 0; i < DIM; i++) {
117 data_[i] = T(v[i]);
118 }
119 }
120
129 template <class T2>
130 explicit vecng(const T2* v) {
131 for(index_t i = 0; i < DIM; i++) {
132 data_[i] = T(v[i]);
133 }
134 }
135
140 vecng(const std::initializer_list<T>& Vi) {
141 index_t i = 0;
142 for(auto& it: Vi) {
143 geo_debug_assert(i < DIM);
144 data()[i] = it;
145 ++i;
146 }
147 }
148
154 return DIM;
155 }
156
161 T* data() {
162 return data_;
163 }
164
169 const T* data() const {
170 return data_;
171 }
172
178 inline T& operator[] (index_t i) {
179 geo_debug_assert(i < DIM);
180 return data()[i];
181 }
182
188 inline const T& operator[] (index_t i) const {
189 geo_debug_assert(i < DIM);
190 return data()[i];
191 }
192
196 inline T length2() const {
197 T result = T(0);
198 for(index_t i = 0; i < DIM; i++) {
199 result += data_[i] * data_[i];
200 }
201 return result;
202 }
203
207 inline T length() const {
208 return sqrt(length2());
209 }
210
216 inline T distance2(const vector_type& v) const {
217 T result(0);
218 for(index_t i = 0; i < DIM; i++) {
219 result += geo_sqr(v.data_[i] - data_[i]);
220 }
221 return result;
222 }
223
229 inline T distance(const vector_type& v) const {
230 return sqrt(distance2(v));
231 }
232
233 // operators
234
243 for(index_t i = 0; i < DIM; i++) {
244 data_[i] += v.data_[i];
245 }
246 return *this;
247 }
248
257 for(index_t i = 0; i < DIM; i++) {
258 data_[i] -= v.data_[i];
259 }
260 return *this;
261 }
262
272 template <class T2>
273 inline vector_type& operator*= (T2 s) {
274 for(index_t i = 0; i < DIM; i++) {
275 data_[i] *= T(s);
276 }
277 return *this;
278 }
279
289 template <class T2>
290 inline vector_type& operator/= (T2 s) {
291 for(index_t i = 0; i < DIM; i++) {
292 data_[i] /= T(s);
293 }
294 return *this;
295 }
296
304 inline vector_type operator+ (const vector_type& v) const {
305 vector_type result(*this);
306 for(index_t i = 0; i < DIM; i++) {
307 result.data_[i] += v.data_[i];
308 }
309 return result;
310 }
311
319 inline vector_type operator- (const vector_type& v) const {
320 vector_type result(*this);
321 for(index_t i = 0; i < DIM; i++) {
322 result.data_[i] -= v.data_[i];
323 }
324 return result;
325 }
326
336 template <class T2>
337 inline vector_type operator* (T2 s) const {
338 vector_type result(*this);
339 for(index_t i = 0; i < DIM; i++) {
340 result.data_[i] *= T(s);
341 }
342 return result;
343 }
344
354 template <class T2>
355 inline vector_type operator/ (T2 s) const {
356 vector_type result(*this);
357 for(index_t i = 0; i < DIM; i++) {
358 result.data_[i] /= T(s);
359 }
360 return result;
361 }
362
368 inline vector_type operator- () const {
369 vector_type result;
370 for(index_t i = 0; i < DIM; i++) {
371 result.data_[i] = -data_[i];
372 }
373 return result;
374 }
375
376 private:
377 T data_[DIM];
378 };
379
387 template <index_t DIM, class T>
388 inline T dot(
389 const vecng<DIM, T>& v1, const vecng<DIM, T>& v2
390 ) {
391 T result = 0;
392 for(index_t i = 0; i < DIM; i++) {
393 result += v1[i] * v2[i];
394 }
395 return result;
396 }
397
409 template <class T2, index_t DIM, class T>
411 T2 s, const vecng<DIM, T>& v
412 ) {
413 vecng<DIM, T> result;
414 for(index_t i = 0; i < DIM; i++) {
415 result[i] = T(s) * v[i];
416 }
417 return result;
418 }
419
420 // Compatibility with GLSL
421
429 template <index_t DIM, class T>
430 inline T length(const vecng<DIM, T>& v) {
431 return v.length();
432 }
433
441 template <index_t DIM, class T>
442 inline T length2(const vecng<DIM, T>& v) {
443 return v.length2();
444 }
445
454 template <index_t DIM, class T>
455 inline T distance2(
456 const vecng<DIM, T>& v1, const vecng<DIM, T>& v2
457 ) {
458 return v2.distance2(v1);
459 }
460
469 template <index_t DIM, class T>
470 inline T distance(
471 const vecng<DIM, T>& v1, const vecng<DIM, T>& v2
472 ) {
473 return v2.distance(v1);
474 }
475
485 template <index_t DIM, class T>
487 const vecng<DIM, T>& v
488 ) {
489 T s = length(v);
490 if(s > 1e-30) {
491 s = T(1) / s;
492 }
493 return s * v;
494 }
495
506 template <index_t DIM, class T>
508 const vecng<DIM, T>& v1, const vecng<DIM, T>& v2, T s
509 ) {
510 return (T(1) - s) * v1 + s * v2;
511 }
512
513 /************************************************************************/
514
519 template <class T>
520 class vecng<2, T> {
521 public:
523 static constexpr index_t dim = 2;
524
527
529 typedef T value_type;
530
533 x(0),
534 y(0) {
535 }
536
541 vecng(T x_in, T y_in) :
542 x(x_in),
543 y(y_in) {
544 }
545
547 template <class T2>
548 explicit vecng(const vecng<dim, T2>& v) :
549 x(v.x),
550 y(v.y) {
551 }
552
554 template <class T2>
555 explicit vecng(const T2* v) :
556 x(v[0]),
557 y(v[1]) {
558 }
559
561 vecng(const std::initializer_list<T>& Vi) {
562 index_t i = 0;
563 for(auto& it: Vi) {
565 data()[i] = it;
566 ++i;
567 }
568 }
569
571 inline T length2() const {
572 return x * x + y * y;
573 }
574
576 inline T length() const {
577 return sqrt(x * x + y * y);
578 }
579
581 inline T distance2(const vector_type& v) const {
582 T dx = v.x - x;
583 T dy = v.y - y;
584 return dx * dx + dy * dy;
585 }
586
588 inline T distance(const vector_type& v) const {
589 return sqrt(distance2(v));
590 }
591
594 x += v.x;
595 y += v.y;
596 return *this;
597 }
598
601 x -= v.x;
602 y -= v.y;
603 return *this;
604 }
605
607 template <class T2>
608 inline vector_type& operator*= (T2 s) {
609 x *= T(s);
610 y *= T(s);
611 return *this;
612 }
613
615 template <class T2>
616 inline vector_type& operator/= (T2 s) {
617 x /= T(s);
618 y /= T(s);
619 return *this;
620 }
621
623 inline vector_type operator+ (const vector_type& v) const {
624 return vector_type(x + v.x, y + v.y);
625 }
626
628 inline vector_type operator- (const vector_type& v) const {
629 return vector_type(x - v.x, y - v.y);
630 }
631
633 template <class T2>
634 inline vector_type operator* (T2 s) const {
635 return vector_type(x * T(s), y * T(s));
636 }
637
639 template <class T2>
640 inline vector_type operator/ (T2 s) const {
641 return vector_type(x / T(s), y / T(s));
642 }
643
645 inline vector_type operator- () const {
646 return vector_type(-x, -y);
647 }
648
651 return dim;
652 }
653
655 T* data() {
656 return &x;
657 }
658
660 const T* data() const {
661 return &x;
662 }
663
665 inline T& operator[] (index_t i) {
667 return data()[i];
668 }
669
671 inline const T& operator[] (index_t i) const {
673 return data()[i];
674 }
675
681
683 T x;
685 T y;
686 };
687
692 template <class T>
693 inline T dot(
694 const vecng<2, T>& v1, const vecng<2, T>& v2
695 ) {
696 return v1.x * v2.x + v1.y * v2.y;
697 }
698
706 template <class T>
707 inline T det(
708 const vecng<2, T>& v1, const vecng<2, T>& v2
709 ) {
710 return v1.x * v2.y - v1.y * v2.x;
711 }
712
717 template <class T2, class T>
719 T2 s, const vecng<2, T>& v
720 ) {
721 return vecng<2, T>(T(s) * v.x, T(s) * v.y);
722 }
723
724 /************************************************************************/
725
730 template <class T>
731 class vecng<3, T> {
732 public:
734 static constexpr index_t dim = 3;
735
738
740 typedef T value_type;
741
744 x(T(0.0)),
745 y(T(0.0)),
746 z(T(0.0)) {
747 }
748
753 vecng(T x_in, T y_in, T z_in) :
754 x(x_in),
755 y(y_in),
756 z(z_in) {
757 }
758
760 template <class T2>
761 explicit vecng(const vecng<dim, T2>& v) :
762 x(v.x),
763 y(v.y),
764 z(v.z) {
765 }
766
768 template <class T2>
769 explicit vecng(const T2* v) :
770 x(v[0]),
771 y(v[1]),
772 z(v[2]) {
773 }
774
776 vecng(const std::initializer_list<T>& Vi) {
777 index_t i = 0;
778 for(auto& it: Vi) {
780 data()[i] = it;
781 ++i;
782 }
783 }
784
786 inline T length2() const {
787 return x * x + y * y + z * z;
788 }
789
791 inline T length() const {
792 return sqrt(x * x + y * y + z * z);
793 }
794
796 inline T distance2(const vector_type& v) const {
797 T dx = v.x - x;
798 T dy = v.y - y;
799 T dz = v.z - z;
800 return dx * dx + dy * dy + dz * dz;
801 }
802
804 inline T distance(const vector_type& v) const {
805 return sqrt(distance2(v));
806 }
807
810 x += v.x;
811 y += v.y;
812 z += v.z;
813 return *this;
814 }
815
818 x -= v.x;
819 y -= v.y;
820 z -= v.z;
821 return *this;
822 }
823
825 template <class T2>
826 inline vector_type& operator*= (T2 s) {
827 x *= T(s);
828 y *= T(s);
829 z *= T(s);
830 return *this;
831 }
832
834 template <class T2>
835 inline vector_type& operator/= (T2 s) {
836 x /= T(s);
837 y /= T(s);
838 z /= T(s);
839 return *this;
840 }
841
843 inline vector_type operator+ (const vector_type& v) const {
844 return vector_type(x + v.x, y + v.y, z + v.z);
845 }
846
848 inline vector_type operator- (const vector_type& v) const {
849 return vector_type(x - v.x, y - v.y, z - v.z);
850 }
851
853 template <class T2>
854 inline vector_type operator* (T2 s) const {
855 return vector_type(x * T(s), y * T(s), z * T(s));
856 }
857
859 template <class T2>
860 inline vector_type operator/ (T2 s) const {
861 return vector_type(x / T(s), y / T(s), z / T(s));
862 }
863
865 inline vector_type operator- () const {
866 return vector_type(-x, -y, -z);
867 }
868
871 return dim;
872 }
873
875 T* data() {
876 return &x;
877 }
878
880 const T* data() const {
881 return &x;
882 }
883
885 inline T& operator[] (index_t i) {
887 return data()[i];
888 }
889
891 inline const T& operator[] (index_t i) const {
893 return data()[i];
894 }
895
902
904 T x;
906 T y;
908 T z;
909 };
910
915 template <class T>
916 inline T dot(
917 const vecng<3, T>& v1, const vecng<3, T>& v2
918 ) {
919 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
920 }
921
929 template <class T>
931 const vecng<3, T>& v1, const vecng<3, T>& v2
932 ) {
933 return vecng<3, T>(
934 det2x2(v1.y, v2.y, v1.z, v2.z),
935 det2x2(v1.z, v2.z, v1.x, v2.x),
936 det2x2(v1.x, v2.x, v1.y, v2.y)
937 );
938 }
939
944 template <class T2, class T>
946 T2 s, const vecng<3, T>& v
947 ) {
948 return vecng<3, T>(T(s) * v.x, T(s) * v.y, T(s) * v.z);
949 }
950
951 /************************************************************************/
952
957 template <class T>
958 class vecng<4, T> {
959 public:
961 static constexpr index_t dim = 4;
962
965
967 typedef T value_type;
968
971 x(0),
972 y(0),
973 z(0),
974 w(0) {
975 }
976
981 vecng(T x_in, T y_in, T z_in, T w_in) :
982 x(x_in),
983 y(y_in),
984 z(z_in),
985 w(w_in) {
986 }
987
989 template <class T2>
990 explicit vecng(const vecng<dim, T2>& v) :
991 x(v.x),
992 y(v.y),
993 z(v.z),
994 w(v.w) {
995 }
996
998 template <class T2>
999 explicit vecng(const T2* v) :
1000 x(v[0]),
1001 y(v[1]),
1002 z(v[2]),
1003 w(v[3]) {
1004 }
1005
1007 vecng(const std::initializer_list<T>& Vi) {
1008 index_t i = 0;
1009 for(auto& it: Vi) {
1010 geo_debug_assert(i < dim);
1011 data()[i] = it;
1012 ++i;
1013 }
1014 }
1015
1017 inline T length2() const {
1018 return x * x + y * y + z * z + w * w;
1019 }
1020
1022 inline T length() const {
1023 return sqrt(x * x + y * y + z * z + w * w);
1024 }
1025
1027 inline T distance2(const vector_type& v) const {
1028 T dx = v.x - x;
1029 T dy = v.y - y;
1030 T dz = v.z - z;
1031 T dw = v.w - w;
1032 return dx * dx + dy * dy + dz * dz + dw * dw;
1033 }
1034
1036 inline T distance(const vector_type& v) const {
1037 return sqrt(distance2(v));
1038 }
1039
1042 return dim;
1043 }
1044
1047 x += v.x;
1048 y += v.y;
1049 z += v.z;
1050 w += v.w;
1051 return *this;
1052 }
1053
1056 x -= v.x;
1057 y -= v.y;
1058 z -= v.z;
1059 w -= v.w;
1060 return *this;
1061 }
1062
1064 template <class T2>
1065 inline vector_type& operator*= (T2 s) {
1066 x *= T(s);
1067 y *= T(s);
1068 z *= T(s);
1069 w *= T(s);
1070 return *this;
1071 }
1072
1074 template <class T2>
1075 inline vector_type& operator/= (T2 s) {
1076 x /= T(s);
1077 y /= T(s);
1078 z /= T(s);
1079 w /= T(s);
1080 return *this;
1081 }
1082
1084 inline vector_type operator+ (const vector_type& v) const {
1085 return vector_type(x + v.x, y + v.y, z + v.z, w + v.w);
1086 }
1087
1089 inline vector_type operator- (const vector_type& v) const {
1090 return vector_type(x - v.x, y - v.y, z - v.z, w - v.w);
1091 }
1092
1094 template <class T2>
1095 inline vector_type operator* (T2 s) const {
1096 return vector_type(x * T(s), y * T(s), z * T(s), w * T(s));
1097 }
1098
1100 template <class T2>
1101 inline vector_type operator/ (T2 s) const {
1102 return vector_type(x / T(s), y / T(s), z / T(s), w / T(s));
1103 }
1104
1106 inline vector_type operator- () const {
1107 return vector_type(-x, -y, -z, -w);
1108 }
1109
1111 T* data() {
1112 return &x;
1113 }
1114
1116 const T* data() const {
1117 return &x;
1118 }
1119
1121 inline T& operator[] (index_t i) {
1122 geo_debug_assert(i < dim);
1123 return data()[i];
1124 }
1125
1127 inline const T& operator[] (index_t i) const {
1128 geo_debug_assert(i < dim);
1129 return data()[i];
1130 }
1131
1133 T x;
1135 T y;
1137 T z;
1139 T w;
1140 };
1141
1146 template <class T>
1147 inline T dot(
1148 const vecng<4, T>& v1, const vecng<4, T>& v2
1149 ) {
1150 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w;
1151 }
1152
1157 template <class T2, class T>
1159 T2 s, const vecng<4, T>& v
1160 ) {
1161 return vecng<4, T>(T(s) * v.x, T(s) * v.y, T(s) * v.z, T(s) * v.w);
1162 }
1163
1173 template <index_t DIM, class T>
1174 inline std::ostream& operator<< (
1175 std::ostream& out, const GEO::vecng<DIM, T>& v
1176 ) {
1177 const char* sep = "";
1178 for(index_t i = 0; i < DIM; i++) {
1179 out << sep << v[i];
1180 sep = " ";
1181 }
1182 return out;
1183 }
1184
1195 template <index_t DIM, class T>
1196 inline std::istream& operator>> (
1197 std::istream& in, GEO::vecng<DIM, T>& v
1198 ) {
1199 char c;
1200 while(isspace(in.peek())) {
1201 in.get(c);
1202 }
1203 if(in.peek() == '[') {
1204 in.get(c);
1205 }
1206 while(isspace(in.peek())) {
1207 in.get(c);
1208 }
1209 for(index_t i = 0; i < DIM; i++) {
1210 in >> v[i];
1211 while(isspace(in.peek())) {
1212 in.get(c);
1213 }
1214 if(in.peek() == ',') {
1215 in.get(c);
1216 }
1217 while(isspace(in.peek())) {
1218 in.get(c);
1219 }
1220 }
1221 if(in.peek() == ']') {
1222 in.get(c);
1223 }
1224 return in;
1225 }
1226
1227 /************************************************************************/
1228
1229 namespace Numeric {
1230
1231 template<class T>
1233 vecng<2,T>& v
1234 ) {
1235 v.optimize();
1236 }
1237
1238 template<class T>
1240 vecng<3,T>& v
1241 ) {
1242 v.optimize();
1243 }
1244
1245 }
1246
1247 /************************************************************************/
1248
1249}
1250
1251#endif
Assertion checking mechanism.
#define geo_debug_assert(x)
Verifies that a condition is met.
Definition assert.h:196
T distance2(const vector_type &v) const
Definition vecg.h:581
vecng(T x_in, T y_in)
Constructs a vector from coordinates.
Definition vecg.h:541
T distance(const vector_type &v) const
Definition vecg.h:588
T y
Vector y coordinate.
Definition vecg.h:685
T * data()
Gets modifiable vector data.
Definition vecg.h:655
index_t dimension() const
Gets the vector dimension.
Definition vecg.h:650
const T * data() const
Gets non-modifiable vector data.
Definition vecg.h:660
void optimize()
Optimizes coordinate representation.
Definition vecg.h:677
T x
Vector x coordinate.
Definition vecg.h:683
vecng(const vecng< dim, T2 > &v)
Constructs a vector by copy.
Definition vecg.h:548
T length() const
Gets the length of the vector.
Definition vecg.h:576
vecng(const std::initializer_list< T > &Vi)
Definition vecg.h:561
T value_type
The type of the vector coordinates.
Definition vecg.h:529
vecng()
Default vector constructor.
Definition vecg.h:532
vecng(const T2 *v)
Constructs a vector from an array.
Definition vecg.h:555
vecng< dim, T > vector_type
This vector type.
Definition vecg.h:526
T length2() const
Gets the squared length of the vector.
Definition vecg.h:571
vecng(const vecng< dim, T2 > &v)
Constructs a vector by copy.
Definition vecg.h:761
T x
Vector x coordinate.
Definition vecg.h:904
void optimize()
Optimizes coordinate representation.
Definition vecg.h:897
vecng()
Default vector constructor.
Definition vecg.h:743
T * data()
Gets modifiable vector data.
Definition vecg.h:875
T y
Vector y coordinate.
Definition vecg.h:906
T value_type
The type of the vector coordinates.
Definition vecg.h:740
T distance2(const vector_type &v) const
Definition vecg.h:796
const T * data() const
Gets non-modifiable vector data.
Definition vecg.h:880
T length2() const
Gets the squared length of the vector.
Definition vecg.h:786
T z
Vector z coordinate.
Definition vecg.h:908
vecng(const T2 *v)
Constructs a vector from an array.
Definition vecg.h:769
vecng(const std::initializer_list< T > &Vi)
Definition vecg.h:776
vecng< dim, T > vector_type
This vector type.
Definition vecg.h:737
vecng(T x_in, T y_in, T z_in)
Constructs a vector from coordinates.
Definition vecg.h:753
T distance(const vector_type &v) const
Definition vecg.h:804
index_t dimension() const
Gets the vector dimension.
Definition vecg.h:870
T length() const
Gets the length of the vector.
Definition vecg.h:791
T distance2(const vector_type &v) const
Definition vecg.h:1027
vecng(const std::initializer_list< T > &Vi)
Definition vecg.h:1007
T length2() const
Gets the squared length of the vector.
Definition vecg.h:1017
T w
Vector w coordinate.
Definition vecg.h:1139
vecng(T x_in, T y_in, T z_in, T w_in)
Constructs a vector from coordinates.
Definition vecg.h:981
vecng< dim, T > vector_type
This vector type.
Definition vecg.h:964
T value_type
The type of the vector coordinates.
Definition vecg.h:967
vecng()
Default vector constructor.
Definition vecg.h:970
T x
Vector x coordinate.
Definition vecg.h:1133
const T * data() const
Gets non-modifiable vector data.
Definition vecg.h:1116
index_t dimension() const
Gets the vector dimension.
Definition vecg.h:1041
T y
Vector y coordinate.
Definition vecg.h:1135
vecng(const T2 *v)
Constructs a vector from an array.
Definition vecg.h:999
T z
Vector z coordinate.
Definition vecg.h:1137
T * data()
Gets modifiable vector data.
Definition vecg.h:1111
T length() const
Gets the length of the vector.
Definition vecg.h:1022
T distance(const vector_type &v) const
Definition vecg.h:1036
vecng(const vecng< dim, T2 > &v)
Constructs a vector by copy.
Definition vecg.h:990
Generic maths vector.
Definition vecg.h:70
vector_type operator*(T2 s) const
Multiplies a vector by a scalar.
Definition vecg.h:337
T & operator[](index_t i)
Gets a modifiable vector coordinate.
Definition vecg.h:178
vector_type & operator-=(const vector_type &v)
Subtracts a vector in place.
Definition vecg.h:256
vecng< DIM, T > normalize(const vecng< DIM, T > &v)
Normalizes a vector.
Definition vecg.h:486
vecng< 3, T > cross(const vecng< 3, T > &v1, const vecng< 3, T > &v2)
Computes the cross product of 2 vectors.
Definition vecg.h:930
T value_type
The type of the vector coordinates.
Definition vecg.h:79
T length2(const vecng< DIM, T > &v)
Gets the square norm of a vector.
Definition vecg.h:442
T det(const vecng< 2, T > &v1, const vecng< 2, T > &v2)
Computes the determinant of 2 vectors.
Definition vecg.h:707
T distance2(const vecng< DIM, T > &v1, const vecng< DIM, T > &v2)
Gets the square distance between 2 vectors.
Definition vecg.h:455
T length2() const
Gets the squared length of the vector.
Definition vecg.h:196
T * data()
Gets modifiable vector data.
Definition vecg.h:161
vector_type & operator/=(T2 s)
Divides by a scalar in place.
Definition vecg.h:290
T dot(const vecng< 4, T > &v1, const vecng< 4, T > &v2)
Computes the dot product of 2 vectors.
Definition vecg.h:1147
T length() const
Gets the length of the vector.
Definition vecg.h:207
const T * data() const
Gets non-modifiable vector data.
Definition vecg.h:169
T length(const vecng< DIM, T > &v)
Gets the norm of a vector.
Definition vecg.h:430
index_t dimension() const
Gets the vector dimension.
Definition vecg.h:153
vector_type operator-() const
Negates a vector.
Definition vecg.h:368
vector_type & operator*=(T2 s)
Multiplies by a scalar in place.
Definition vecg.h:273
vector_type operator+(const vector_type &v) const
Adds 2 vectors.
Definition vecg.h:304
vector_type operator/(T2 s) const
Divides a vector by a scalar.
Definition vecg.h:355
vector_type & operator+=(const vector_type &v)
Adds a vector in place.
Definition vecg.h:242
vecng()
Default vector constructor.
Definition vecg.h:85
vecng< DIM, T > vector_type
This vector type.
Definition vecg.h:76
T dot(const vecng< 2, T > &v1, const vecng< 2, T > &v2)
Computes the dot product of 2 vectors.
Definition vecg.h:693
vecng< DIM, T > mix(const vecng< DIM, T > &v1, const vecng< DIM, T > &v2, T s)
Computes a weighted barycenter.
Definition vecg.h:507
T distance(const vecng< DIM, T > &v1, const vecng< DIM, T > &v2)
Gets the distance between 2 vectors.
Definition vecg.h:470
T distance(const vector_type &v) const
Gets the distance to a vector.
Definition vecg.h:229
vecng(const vecng< DIM, T2 > &v)
Constructs a vector by copy.
Definition vecg.h:104
T distance2(const vector_type &v) const
Gets the squared distance to a vector.
Definition vecg.h:216
vecng(const std::initializer_list< T > &Vi)
Constructs a vector from an initializer list.
Definition vecg.h:140
vecng(const T2 *v)
Constructs a vector from an array.
Definition vecg.h:130
static constexpr index_t dim
The dimension of the vector.
Definition vecg.h:73
T dot(const vecng< DIM, T > &v1, const vecng< DIM, T > &v2)
Computes the dot product of 2 vectors.
Definition vecg.h:388
Determinants for small sizes.
Common include file, providing basic definitions. Should be included before anything else by all head...
Types and functions for memory manipulation.
void optimize_number_representation(T &x)
place holder for optimizing internal number representation
Definition numeric.h:267
Global Vorpaline namespace.
T dot(const vecng< 3, T > &v1, const vecng< 3, T > &v2)
Computes the dot product of 2 vectors. vecng
Definition vecg.h:916
std::istream & operator>>(std::istream &in, Quaternion &q)
Reads a Quaternion from a stream.
Definition quaternion.h:225
T geo_sqr(T x)
Gets the square value of a value.
Definition numeric.h:301
std::ostream & operator<<(std::ostream &out, const Quaternion &q)
Writes a Quaternion to a stream.
Definition quaternion.h:213
geo_index_t index_t
The type for storing and manipulating indices.
Definition numeric.h:329
T det2x2(const T &a11, const T &a12, const T &a21, const T &a22)
Computes a two-by-two determinant.
Definition determinant.h:58
vecng< DIM, FT > operator*(const Matrix< DIM, FT > &M, const vecng< DIM, FT > &x)
Computes a matrix vector product.
Definition matrix.h:536
Types and functions for numbers manipulation.