Graphite Version 3
An experimental 3D geometry processing program
Loading...
Searching...
No Matches
geometry.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2000-2022 Inria
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * * Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * * Neither the name of the ALICE Project-Team nor the names of its
14 * contributors may be used to endorse or promote products derived from this
15 * software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
21 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Contact: Bruno Levy
30 *
31 * https://www.inria.fr/fr/bruno-levy
32 *
33 * Inria,
34 * Domaine de Voluceau,
35 * 78150 Le Chesnay - Rocquencourt
36 * FRANCE
37 *
38 */
39
40#ifndef GEOGRAM_BASIC_GEOMETRY
41#define GEOGRAM_BASIC_GEOMETRY
42
45
51namespace GEO {
52
53 /************************************************************************/
54
60
66
72
79
86
93
94
101
108
115
122
129
136
142
148
154
155 /************************************************************************/
156
162 inline double det(const mat2& M) {
163 return det2x2(
164 M(0,0), M(0,1),
165 M(1,0), M(1,1)
166 );
167 }
168
174 inline double det(const mat3& M) {
175 return det3x3(
176 M(0,0), M(0,1), M(0,2),
177 M(1,0), M(1,1), M(1,2),
178 M(2,0), M(2,1), M(2,2)
179 );
180 }
181
187 inline double det(const mat4& M) {
188 return det4x4(
189 M(0,0), M(0,1), M(0,2), M(0,3),
190 M(1,0), M(1,1), M(1,2), M(1,3),
191 M(2,0), M(2,1), M(2,2), M(2,3),
192 M(3,0), M(3,1), M(3,2), M(3,3)
193 );
194 }
195
196 /************************************************************************/
197
201 namespace Geom {
202
209 inline vec3 barycenter(const vec3& p1, const vec3& p2) {
210 return vec3(
211 0.5 * (p1.x + p2.x),
212 0.5 * (p1.y + p2.y),
213 0.5 * (p1.z + p2.z)
214 );
215 }
216
223 inline vec2 barycenter(const vec2& p1, const vec2& p2) {
224 return vec2(
225 0.5 * (p1.x + p2.x),
226 0.5 * (p1.y + p2.y)
227 );
228 }
229
238 const vec3& p1, const vec3& p2, const vec3& p3
239 ) {
240 return vec3(
241 (p1.x + p2.x + p3.x) / 3.0,
242 (p1.y + p2.y + p3.y) / 3.0,
243 (p1.z + p2.z + p3.z) / 3.0
244 );
245 }
246
254 inline vec2 barycenter(
255 const vec2& p1, const vec2& p2, const vec2& p3
256 ) {
257 return vec2(
258 (p1.x + p2.x + p3.x) / 3.0,
259 (p1.y + p2.y + p3.y) / 3.0
260 );
261 }
262
269 inline double cos_angle(const vec3& a, const vec3& b) {
270 double lab = ::sqrt(length2(a)*length2(b));
271 double result = (lab > 1e-50) ? (dot(a, b) / lab) : 1.0;
272 // Numerical precision problem may occur, and generate
273 // normalized dot products that are outside the valid
274 // range of acos.
275 geo_clamp(result, -1.0, 1.0);
276 return result;
277 }
278
286 inline double angle(const vec3& a, const vec3& b) {
287 return ::acos(cos_angle(a, b));
288 }
289
296 inline double cos_angle(const vec2& a, const vec2& b) {
297 double lab = ::sqrt(length2(a)*length2(b));
298 double result = (lab > 1e-20) ? (dot(a, b) / lab) : 1.0;
299 // Numerical precision problem may occur, and generate
300 // normalized dot products that are outside the valid
301 // range of acos.
302 geo_clamp(result, -1.0, 1.0);
303 return result;
304 }
305
312 inline double det(const vec2& a, const vec2& b) {
313 return a.x * b.y - a.y * b.x;
314 }
315
323 inline double angle(const vec2& a, const vec2& b) {
324 return det(a, b) > 0 ?
325 ::acos(cos_angle(a, b)) :
326 -::acos(cos_angle(a, b));
327 }
328
336 const vec3& p1, const vec3& p2, const vec3& p3
337 ) {
338 return cross(p2 - p1, p3 - p1);
339 }
340
346 inline double triangle_area_3d(
347 const double* p1, const double* p2, const double* p3
348 ) {
349 double Ux = p2[0] - p1[0];
350 double Uy = p2[1] - p1[1];
351 double Uz = p2[2] - p1[2];
352
353 double Vx = p3[0] - p1[0];
354 double Vy = p3[1] - p1[1];
355 double Vz = p3[2] - p1[2];
356
357 double Nx = Uy*Vz - Uz*Vy;
358 double Ny = Uz*Vx - Ux*Vz;
359 double Nz = Ux*Vy - Uy*Vx;
360 return 0.5 * ::sqrt(Nx*Nx+Ny*Ny+Nz*Nz);
361 }
362
368 inline double triangle_area(
369 const vec3& p1, const vec3& p2, const vec3& p3
370 ) {
371 return triangle_area_3d(p1.data(), p2.data(), p3.data());
372 }
373
383 const double* p1, const double* p2, const double* p3
384 ) {
385 double a = p2[0]-p1[0];
386 double b = p3[0]-p1[0];
387 double c = p2[1]-p1[1];
388 double d = p3[1]-p1[1];
389 return 0.5*(a*d-b*c);
390 }
391
400 inline double triangle_signed_area(
401 const vec2& p1, const vec2& p2, const vec2& p3
402 ) {
403 return 0.5 * det(p2 - p1, p3 - p1);
404 }
405
413 inline double triangle_area(
414 const vec2& p1, const vec2& p2, const vec2& p3
415 ) {
416 return ::fabs(triangle_signed_area(p1, p2, p3));
417 }
418
426 inline double triangle_area_2d(
427 const double* p1, const double* p2, const double* p3
428 ) {
429 return ::fabs(triangle_signed_area_2d(p1,p2,p3));
430 }
431
441 const vec2& p1, const vec2& p2, const vec2& p3
442 );
443
449 inline bool has_nan(const vec3& v) {
450 return
451 Numeric::is_nan(v.x) ||
452 Numeric::is_nan(v.y) ||
453 Numeric::is_nan(v.z);
454 }
455
461 inline bool has_nan(const vec2& v) {
462 return
463 Numeric::is_nan(v.x) ||
464 Numeric::is_nan(v.y);
465 }
466
472 vec3 GEOGRAM_API perpendicular(const vec3& V);
473
483 inline double tetra_signed_volume(
484 const vec3& p1, const vec3& p2,
485 const vec3& p3, const vec3& p4
486 ) {
487 return dot(p2 - p1, cross(p3 - p1, p4 - p1)) / 6.0;
488 }
489
499 inline double tetra_signed_volume(
500 const double* p1, const double* p2,
501 const double* p3, const double* p4
502 ) {
503 return tetra_signed_volume(
504 *reinterpret_cast<const vec3*>(p1),
505 *reinterpret_cast<const vec3*>(p2),
506 *reinterpret_cast<const vec3*>(p3),
507 *reinterpret_cast<const vec3*>(p4)
508 );
509 }
510
520 inline double tetra_volume(
521 const vec3& p1, const vec3& p2,
522 const vec3& p3, const vec3& p4
523 ) {
524 return ::fabs(tetra_signed_volume(p1, p2, p3, p4));
525 }
526
538 const vec3& p1, const vec3& p2,
539 const vec3& p3, const vec3& p4
540 );
541
554 inline void triangle_centroid(
555 const vec3& p, const vec3& q, const vec3& r,
556 double a, double b, double c,
557 vec3& Vg, double& V
558 ) {
559 double abc = a + b + c;
560 double area = Geom::triangle_area(p, q, r);
561 V = area / 3.0 * abc;
562 double wp = a + abc;
563 double wq = b + abc;
564 double wr = c + abc;
565 double s = area / 12.0;
566 Vg.x = s * (wp * p.x + wq * q.x + wr * r.x);
567 Vg.y = s * (wp * p.y + wq * q.y + wr * r.y);
568 Vg.z = s * (wp * p.z + wq * q.z + wr * r.z);
569 }
570
583 inline double triangle_mass(
584 const vec3& p, const vec3& q, const vec3& r,
585 double a, double b, double c
586 ) {
587 return Geom::triangle_area(p, q, r) / 3.0 * (
588 sqrt(::fabs(a)) + sqrt(::fabs(b)) + sqrt(::fabs(c))
589 );
590 }
591
603 const vec3& p1,
604 const vec3& p2,
605 const vec3& p3
606 ) {
607 double s = Numeric::random_float64();
608 double t = Numeric::random_float64();
609 if(s + t > 1) {
610 s = 1.0 - s;
611 t = 1.0 - t;
612 }
613 double u = 1.0 - s - t;
614 return vec3(
615 u * p1.x + s * p2.x + t * p3.x,
616 u * p1.y + s * p2.y + t * p3.y,
617 u * p1.z + s * p2.z + t * p3.z
618 );
619 }
620 }
621
627 struct Plane {
628
635 Plane(const vec3& p1, const vec3& p2, const vec3& p3) {
636 vec3 n = cross(p2 - p1, p3 - p1);
637 a = n.x;
638 b = n.y;
639 c = n.z;
640 d = -(a * p1.x + b * p1.y + c * p1.z);
641 }
642
649 Plane(const vec3& p, const vec3& n) {
650 a = n.x;
651 b = n.y;
652 c = n.z;
653 d = -(a * p.x + b * p.y + c * p.z);
654 }
655
660 double a_in, double b_in, double c_in, double d_in
661 ) :
662 a(a_in),
663 b(b_in),
664 c(c_in),
665 d(d_in) {
666 }
667
672 }
673
677 vec3 normal() const {
678 return vec3(a, b, c);
679 }
680
681 double a, b, c, d;
682 };
683
684 /*******************************************************************/
685
689 class Box {
690 public:
691 double xyz_min[3];
692 double xyz_max[3];
693
699 bool contains(const vec3& b) const {
700 for(coord_index_t c = 0; c < 3; ++c) {
701 if(b[c] < xyz_min[c]) {
702 return false;
703 }
704 if(b[c] > xyz_max[c]) {
705 return false;
706 }
707 }
708 return true;
709 }
710 };
711
712 typedef Box Box3d;
713
721 inline bool bboxes_overlap(const Box& B1, const Box& B2) {
722 for(coord_index_t c = 0; c < 3; ++c) {
723 if(B1.xyz_max[c] < B2.xyz_min[c]) {
724 return false;
725 }
726 if(B1.xyz_min[c] > B2.xyz_max[c]) {
727 return false;
728 }
729 }
730 return true;
731 }
732
740 inline void bbox_union(Box& target, const Box& B1, const Box& B2) {
741 for(coord_index_t c = 0; c < 3; ++c) {
742 target.xyz_min[c] = std::min(B1.xyz_min[c], B2.xyz_min[c]);
743 target.xyz_max[c] = std::max(B1.xyz_max[c], B2.xyz_max[c]);
744 }
745 }
746
747 /*******************************************************************/
748
752 class Box2d {
753 public:
754 double xy_min[2];
755 double xy_max[2];
756
762 bool contains(const vec2& b) const {
763 for(coord_index_t c = 0; c < 2; ++c) {
764 if(b[c] < xy_min[c]) {
765 return false;
766 }
767 if(b[c] > xy_max[c]) {
768 return false;
769 }
770 }
771 return true;
772 }
773 };
774
775
783 inline bool bboxes_overlap(const Box2d& B1, const Box2d& B2) {
784 for(coord_index_t c = 0; c < 2; ++c) {
785 if(B1.xy_max[c] < B2.xy_min[c]) {
786 return false;
787 }
788 if(B1.xy_min[c] > B2.xy_max[c]) {
789 return false;
790 }
791 }
792 return true;
793 }
794
802 inline void bbox_union(Box2d& target, const Box2d& B1, const Box2d& B2) {
803 for(coord_index_t c = 0; c < 2; ++c) {
804 target.xy_min[c] = std::min(B1.xy_min[c], B2.xy_min[c]);
805 target.xy_max[c] = std::max(B1.xy_max[c], B2.xy_max[c]);
806 }
807 }
808
809 /*******************************************************************/
810
824 template <class FT> vecng<3,FT> transform_vector(
825 const vecng<3,FT>& v,
826 const Matrix<4,FT>& m
827 ){
828 index_t i,j ;
829 FT result[4] ;
830
831 for(i=0; i<4; i++) {
832 result[i] = 0 ;
833 }
834 for(i=0; i<4; i++) {
835 for(j=0; j<3; j++) {
836 result[i] += v[j] * m(j,i) ;
837 }
838 }
839
840 return vecng<3,FT>(
841 result[0], result[1], result[2]
842 ) ;
843 }
844
860 template <class FT> vecng<3,FT> transform_point(
861 const vecng<3,FT>& v,
862 const Matrix<4,FT>& m
863 ){
864 index_t i,j ;
865 FT result[4] ;
866
867 for(i=0; i<4; i++) {
868 result[i] = 0 ;
869 }
870 for(i=0; i<4; i++) {
871 for(j=0; j<3; j++) {
872 result[i] += v[j] * m(j,i) ;
873 }
874 result[i] += m(3,i);
875 }
876
877 return vecng<3,FT>(
878 result[0] / result[3],
879 result[1] / result[3],
880 result[2] / result[3]
881 ) ;
882 }
883
884
900 template <class FT> vecng<3,FT> transform_point(
901 const Matrix<4,FT>& m,
902 const vecng<3,FT>& v
903 ){
904 index_t i,j ;
905 FT result[4] ;
906
907 for(i=0; i<4; i++) {
908 result[i] = 0 ;
909 }
910 for(i=0; i<4; i++) {
911 for(j=0; j<3; j++) {
912 result[i] += v[j] * m(i,j) ;
913 }
914 result[i] += m(i,3);
915 }
916
917 return vecng<3,FT>(
918 result[0] / result[3],
919 result[1] / result[3],
920 result[2] / result[3]
921 ) ;
922 }
923
934 template <class FT> vecng<4,FT> transform_vector(
935 const vecng<4,FT>& v,
936 const Matrix<4,FT>& m
937 ) {
938 index_t i,j ;
939 FT res[4] = {FT(0), FT(0), FT(0), FT(0)};
940
941 for(i=0; i<4; i++) {
942 for(j=0; j<4; j++) {
943 res[i] += v[j] * m(j,i) ;
944 }
945 }
946
947 return vecng<4,FT>(res[0], res[1], res[2], res[3]) ;
948 }
949
950 /******************************************************************/
951
961 mat4 result;
962 result.load_identity();
963 result(3,0) = T.x;
964 result(3,1) = T.y;
965 result(3,2) = T.z;
966 return result;
967 }
968
977 inline mat4 create_scaling_matrix(double s) {
978 mat4 result;
979 result.load_identity();
980 result(0,0) = s;
981 result(1,1) = s;
982 result(2,2) = s;
983 return result;
984 }
985
986 /******************************************************************/
987
991 struct Ray {
997 Ray(vec3 O, vec3 D) : origin(O), direction(D) {
998 }
1003 }
1004 vec3 origin;
1005 vec3 direction;
1006 };
1007
1008 /******************************************************************/
1009
1010}
1011
1012#endif
Axis-aligned bounding box.
Definition geometry.h:752
bool contains(const vec2 &b) const
Tests whether a box contains a point.
Definition geometry.h:762
Axis-aligned bounding box.
Definition geometry.h:689
bool contains(const vec3 &b) const
Tests whether a box contains a point.
Definition geometry.h:699
A matrix type.
Definition matrix.h:66
void load_identity()
Sets the matrix to identity.
Definition matrix.h:145
Generic maths vector.
Definition vecg.h:70
T * data()
Gets modifiable vector data.
Definition vecg.h:161
Common include file, providing basic definitions. Should be included before anything else by all head...
Generic matrix type.
double det(const vec2 &a, const vec2 &b)
Computes the determinant of two vectors.
Definition geometry.h:312
double triangle_signed_area(const vec2 &p1, const vec2 &p2, const vec2 &p3)
Computes the area of a 2d triangle.
Definition geometry.h:400
vec3 tetra_circum_center(const vec3 &p1, const vec3 &p2, const vec3 &p3, const vec3 &p4)
Computes the center of the circumscribed sphere of 3d tetrahedron.
vec3 random_point_in_triangle(const vec3 &p1, const vec3 &p2, const vec3 &p3)
Generates a random point in a 3d triangle.
Definition geometry.h:602
double tetra_volume(const vec3 &p1, const vec3 &p2, const vec3 &p3, const vec3 &p4)
Computes the volume of a 3d tetrahedron.
Definition geometry.h:520
vec3 perpendicular(const vec3 &V)
Computes a 3d vector orthogonal to another one.
vec3 triangle_normal(const vec3 &p1, const vec3 &p2, const vec3 &p3)
Computes the normal of a 3d triangle.
Definition geometry.h:335
double triangle_mass(const vec3 &p, const vec3 &q, const vec3 &r, double a, double b, double c)
Computes the mass of a 3d triangle with weighted points.
Definition geometry.h:583
double cos_angle(const vec3 &a, const vec3 &b)
Computes the cosine of the angle between two 3d vectors.
Definition geometry.h:269
double triangle_area(const vec3 &p1, const vec3 &p2, const vec3 &p3)
Computes the area of a 3d triangle.
Definition geometry.h:368
double triangle_signed_area_2d(const double *p1, const double *p2, const double *p3)
Computes the area of a 2d triangle.
Definition geometry.h:382
void triangle_centroid(const vec3 &p, const vec3 &q, const vec3 &r, double a, double b, double c, vec3 &Vg, double &V)
Computes the centroid of a 3d triangle with weighted points.
Definition geometry.h:554
bool has_nan(const vec3 &v)
Tests whether a 3d vector has a NaN (not a number) coordinate.
Definition geometry.h:449
double triangle_area_2d(const double *p1, const double *p2, const double *p3)
Computes the area of a 2d triangle.
Definition geometry.h:426
double angle(const vec3 &a, const vec3 &b)
Computes the angle between two 3d vectors.
Definition geometry.h:286
double triangle_area_3d(const double *p1, const double *p2, const double *p3)
Computes the area of a 3d triangle.
Definition geometry.h:346
double tetra_signed_volume(const vec3 &p1, const vec3 &p2, const vec3 &p3, const vec3 &p4)
Computes the signed volume of a 3d tetrahedron.
Definition geometry.h:483
vec3 barycenter(const vec3 &p1, const vec3 &p2)
Computes the barycenter of two points in 3d.
Definition geometry.h:209
vec2 triangle_circumcenter(const vec2 &p1, const vec2 &p2, const vec2 &p3)
Computes the center of the circumscribed circle of a 2d triangle.
float64 random_float64()
Returns a 64 bits float between 0 and 1.
bool is_nan(float32 x)
Checks whether a 32 bits float is "not a number".
Global Vorpaline namespace.
Matrix< 4, Numeric::float64 > mat4
Represents a 4x4 matrix.
Definition geometry.h:153
bool bboxes_overlap(const Box &B1, const Box &B2)
Tests whether two Boxes have a non-empty intersection.
Definition geometry.h:721
vecng< 3, Numeric::float32 > vec3f
Represents points and vectors in 3d with single-precision coordinates.
Definition geometry.h:85
T dot(const vecng< 3, T > &v1, const vecng< 3, T > &v2)
Computes the dot product of 2 vectors. vecng
Definition vecg.h:916
vecng< 4, Numeric::float32 > vec4f
Represents points and vectors in 4d with single-precision coordinates.
Definition geometry.h:92
void bbox_union(Box &target, const Box &B1, const Box &B2)
Computes the smallest Box that encloses two Boxes.
Definition geometry.h:740
vecng< 3, FT > transform_vector(const vecng< 3, FT > &v, const Matrix< 4, FT > &m)
Applies a 3d transform to a 3d vector.
Definition geometry.h:824
vecng< 3, Numeric::float64 > vec3
Represents points and vectors in 3d.
Definition geometry.h:65
vecng< 3, Numeric::int32 > vec3i
Represents points and vectors in 3d with integer coordinates.
Definition geometry.h:107
T det3x3(const T &a11, const T &a12, const T &a13, const T &a21, const T &a22, const T &a23, const T &a31, const T &a32, const T &a33)
Computes a three-by-three determinant.
Definition determinant.h:69
T det4x4(const T &a11, const T &a12, const T &a13, const T &a14, const T &a21, const T &a22, const T &a23, const T &a24, const T &a31, const T &a32, const T &a33, const T &a34, const T &a41, const T &a42, const T &a43, const T &a44)
Computes a four-by-four determinant.
Definition determinant.h:85
void geo_clamp(T &x, T min, T max)
Clamps a value to a range.
Definition numeric.h:314
vecng< 3, Numeric::uint32 > vec3u
Represents points and vectors in 3d with unsigned integer coordinates.
Definition geometry.h:128
mat4 create_scaling_matrix(double s)
Creates a scaling matrix.
Definition geometry.h:977
vecng< 2, Numeric::uint32 > vec2u
Represents points and vectors in 2d with unsigned integer coordinates.
Definition geometry.h:121
vecng< 3, FT > transform_point(const vecng< 3, FT > &v, const Matrix< 4, FT > &m)
Applies a 3d transform to a 3d point.
Definition geometry.h:860
geo_index_t index_t
The type for storing and manipulating indices.
Definition numeric.h:329
double det(const mat2 &M)
Computes the determinant of a 2x2 matrix.
Definition geometry.h:162
vecng< 4, Numeric::float64 > vec4
Represents points and vectors in 4d.
Definition geometry.h:71
mat4 create_translation_matrix(const vec3 &T)
Creates a translation matrix from a vector.
Definition geometry.h:960
vecng< 2, Numeric::int32 > vec2i
Represents points and vectors in 2d with integer coordinates.
Definition geometry.h:100
T det2x2(const T &a11, const T &a12, const T &a21, const T &a22)
Computes a two-by-two determinant.
Definition determinant.h:58
Matrix< 3, Numeric::float64 > mat3
Represents a 3x3 matrix.
Definition geometry.h:147
vecng< 4, Numeric::uint32 > vec4u
Represents points and vectors in 4d with unsigned integer coordinates.
Definition geometry.h:135
vecng< 2, Numeric::float32 > vec2f
Represents points and vectors in 2d with single-precision coordinates.
Definition geometry.h:78
vecng< 2, Numeric::float64 > vec2
Represents points and vectors in 2d.
Definition geometry.h:59
geo_coord_index_t coord_index_t
The type for storing coordinate indices, and iterating on the coordinates of a point.
Definition numeric.h:363
vecng< 4, Numeric::int32 > vec4i
Represents points and vectors in 4d with integer coordinates.
Definition geometry.h:114
Matrix< 2, Numeric::float64 > mat2
Represents a 2x2 matrix.
Definition geometry.h:141
A 3D Plane.
Definition geometry.h:627
Plane(const vec3 &p1, const vec3 &p2, const vec3 &p3)
Constructs the plane passing through three points.
Definition geometry.h:635
Plane(const vec3 &p, const vec3 &n)
Constructs a plane passign through a point and orthogonal to a vector.
Definition geometry.h:649
Plane(double a_in, double b_in, double c_in, double d_in)
Constructs a plane from the coefficients of its equation.
Definition geometry.h:659
Plane()
Constructs an uninitialized plane.
Definition geometry.h:671
vec3 normal() const
Gets the normal vector of the plane.
Definition geometry.h:677
A Ray, in parametric form.
Definition geometry.h:991
Ray()
Ray constructor.
Definition geometry.h:1002
Ray(vec3 O, vec3 D)
Ray constructor.
Definition geometry.h:997