Graphite Version 3
An experimental 3D geometry processing program
Loading...
Searching...
No Matches
exact_geometry.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2000-2023 Inria
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * * Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * * Neither the name of the ALICE Project-Team nor the names of its
14 * contributors may be used to endorse or promote products derived from this
15 * software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
21 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Contact: Bruno Levy
30 *
31 * https://www.inria.fr/fr/bruno-levy
32 *
33 * Inria,
34 * Domaine de Voluceau,
35 * 78150 Le Chesnay - Rocquencourt
36 * FRANCE
37 *
38 */
39
40#ifndef GEOGRAM_NUMERICS_EXACT_GEOMETRY
41#define GEOGRAM_NUMERICS_EXACT_GEOMETRY
42
45#include <geogram/basic/vechg.h>
47#include <geogram/numerics/interval_nt.h>
48
51
52#ifdef GEOGRAM_WITH_GEOGRAMPLUS
53#include <geogram/geogramplus/numerics/exact_geometry.h>
54#endif
55
66// If Tessael's geogramplus is available, use exact_nt coordinates,
67// else use expansion_nt coordinates.
68// exact_nt coordinates makes the algorithm 10x to 20x faster
69// and have no risk of underflow / overflow.
70#ifdef GEOGRAM_WITH_GEOGRAMPLUS
71#define GEOGRAM_USE_EXACT_NT
72#endif
73
74namespace GEO {
75
81
87
94
101
109
117
125
133
134 /***********************************************************************/
135
143 template <class VEC3 = vec3>
144 inline VEC3 make_vec3(const vec3& p1, const vec3& p2) {
145 typedef typename VEC3::value_type value_type;
146 return VEC3(
147 value_type(p2.x) - value_type(p1.x),
148 value_type(p2.y) - value_type(p1.y),
149 value_type(p2.z) - value_type(p1.z)
150 );
151 }
152
160 template <class VEC2>
161 inline VEC2 make_vec2(
162 const vec2& p1, const vec2& p2
163 ) {
164 typedef typename VEC2::value_type value_type;
165 return VEC2(
166 value_type(p2.x) - value_type(p1.x),
167 value_type(p2.y) - value_type(p1.y)
168 );
169 }
170
179 template <class VEC3>
180 inline VEC3 triangle_normal(
181 const vec3& p1, const vec3& p2, const vec3& p3
182 ) {
183 return cross(
184 make_vec3<VEC3>(p1,p2),
185 make_vec3<VEC3>(p1,p3)
186 );
187 }
188
189 /***********************************************************************/
190
191 namespace PCK {
192
204 Sign GEOGRAM_API orient_2d(
205 const vec2HE& p0, const vec2HE& p1, const vec2HE& p2
206 );
207
224 const vec3HE& p0, const vec3HE& p1, const vec3HE& p2,
225 coord_index_t axis
226 );
227
239 Sign GEOGRAM_API orient_3d(
240 const vec3HE& p0, const vec3HE& p1,
241 const vec3HE& p2, const vec3HE& p3
242 );
243
252 Sign GEOGRAM_API dot_2d(
253 const vec2HE& p0, const vec2HE& p1, const vec2HE& p2
254 );
255
272 const vec2HE& p0, const vec2HE& p1,
273 const vec2HE& p2, const vec2HE& p3,
274 double l0, double l1, double l2, double l3
275 );
276
293 const vec2HE& p0, const vec2HE& p1,
294 const vec2HE& p2, const vec2HE& p3,
295 double l0, double l1, double l2, double l3
296 );
297
315 const vec2HE& p0, const vec2HE& p1,
316 const vec2HE& p2, const vec2HE& p3
317 ) {
318 double l0 = (geo_sqr(p0.x) + geo_sqr(p0.y)).estimate() /
319 geo_sqr(p0.w).estimate();
320 double l1 = (geo_sqr(p1.x) + geo_sqr(p1.y)).estimate() /
321 geo_sqr(p1.w).estimate();
322 double l2 = (geo_sqr(p2.x) + geo_sqr(p2.y)).estimate() /
323 geo_sqr(p2.w).estimate();
324 double l3 = (geo_sqr(p3.x) + geo_sqr(p3.y)).estimate() /
325 geo_sqr(p3.w).estimate();
326 return incircle_2d_SOS_with_lengths(p0,p1,p2,p3,l0,l1,l2,l3);
327 }
328
340 const vec3& p1, const vec3& p2, const vec3& p3
341 );
342
351 bool GEOGRAM_API aligned_3d(
352 const vec3HE& p0, const vec3HE& p1, const vec3HE& p2
353 );
354
363 bool GEOGRAM_API on_segment_3d(
364 const vec3HE& p, const vec3HE& q1, const vec3HE& q2
365 );
366
374 vec3 GEOGRAM_API approximate(const vec3HE& p);
375
383 vec2 GEOGRAM_API approximate(const vec2HE& p);
384
385 }
386
387 /************************************************************************/
388
392 template <>
393 inline vec2E make_vec2<vec2E>(const vec2& p1, const vec2& p2) {
394 return vec2E(
395 expansion_nt(expansion_nt::DIFF, p2.x, p1.x),
396 expansion_nt(expansion_nt::DIFF, p2.y, p1.y)
397 );
398 }
399
403 template <>
404 inline vec3E make_vec3<vec3E>(const vec3& p1, const vec3& p2) {
405 return vec3E(
406 expansion_nt(expansion_nt::DIFF, p2.x, p1.x),
407 expansion_nt(expansion_nt::DIFF, p2.y, p1.y),
408 expansion_nt(expansion_nt::DIFF, p2.z, p1.z)
409 );
410 }
411
412// Under Linux we got 10 Mb of stack (!) Then some operations can be
413// made faster by using the low-level expansion API (that allocates
414// intermediary multiprecision values on stack rather than in the heap).
415// These optimized functions are written as template specializations
416// (used automatically).
417
418#ifdef GEO_HAS_BIG_STACK
419
423 template<> expansion_nt GEOGRAM_API det(const vec2E& v1, const vec2E& v2);
424
428 template<> expansion_nt GEOGRAM_API dot(const vec2E& v1, const vec2E& v2);
429
433 template<> expansion_nt GEOGRAM_API dot(const vec3E& v1, const vec3E& v2);
434
438 template<> vec2Hg<expansion_nt> GEOGRAM_API mix(
439 const rationalg<expansion_nt>& t,
440 const vecng<2,double>& p1, const vecng<2,double>& p2
441 );
442
446 template<> vec3Hg<expansion_nt> GEOGRAM_API mix(
447 const rationalg<expansion_nt>& t,
448 const vecng<3,double>& p1, const vecng<3,double>& p2
449 );
450
454 template <> GEOGRAM_API vec3E triangle_normal<vec3E>(
455 const vec3& p1, const vec3& p2, const vec3& p3
456 );
457
458#endif
459
460 /************************************************************************/
461
467 namespace exact {
468#ifdef GEOGRAM_USE_EXACT_NT
469 typedef exact_nt scalar;
470#else
472#endif
480
485
490 }
491}
492
493#endif
Expansion_nt (expansion Number Type) is used to compute the sign of polynoms exactly.
rationalg (generic rational) is used to compute the sign of rational fractions exactly.
Definition rationalg.h:59
2d vector with homogeneous coordinates
Definition vechg.h:60
3d vector with homogeneous coordinates
Definition vechg.h:185
Generic maths vector.
Definition vecg.h:70
Exact predicates and constructs.
High-level interface to multi-precision arithmetics.
Common include file, providing basic definitions. Should be included before anything else by all head...
Geometric functions in 2d and 3d.
Sign orient_2d_projected(const vec3HE &p0, const vec3HE &p1, const vec3HE &p2, coord_index_t axis)
Computes the orientation predicate in 2d projected along an axis.
Sign orient_2d(const vec2HE &p0, const vec2HE &p1, const vec2HE &p2)
Computes the orientation predicate in 2d.
Sign incircle_2d_SOS_with_lengths(const vec2HE &p0, const vec2HE &p1, const vec2HE &p2, const vec2HE &p3, double l0, double l1, double l2, double l3)
Tests whether a point is in the circumscribed circle of three other points.
bool on_segment_3d(const vec3HE &p, const vec3HE &q1, const vec3HE &q2)
Tests whether a point is on a segment.
vec3 approximate(const vec3HE &p)
Gets a 3D floating-point approximation of a 3D point with exact coordinates.
coord_index_t triangle_normal_axis(const vec3 &p1, const vec3 &p2, const vec3 &p3)
Gets the axis that is most normal to a triangle.
Sign dot_2d(const vec2HE &p0, const vec2HE &p1, const vec2HE &p2)
Computes the sign of the dot product between two vectors defined by three points.
bool aligned_3d(const vec3HE &p0, const vec3HE &p1, const vec3HE &p2)
Tests whether three 3d points are aligned.
Sign orient_3d(const vec3HE &p0, const vec3HE &p1, const vec3HE &p2, const vec3HE &p3)
Computes the orientation predicate in 3d.
Sign incircle_2d_SOS(const vec2HE &p0, const vec2HE &p1, const vec2HE &p2, const vec2HE &p3)
Tests whether a point is in the circumscribed circle of three other points.
vecng< 2, scalar > vec2
expansion_nt scalar
vec2Hg< scalar > vec2h
2d vector with exact homogeneous coordinates
vecng< 3, scalar > vec3
rationalg< scalar > rational
rational with exact numerator and denominator
vec3Hg< scalar > vec3h
3d vector with exact homogeneous coordinates
Global Vorpaline namespace.
vecng< 3, interval_nt > vec3I
vec3 with coordinates as interval_nt
vec2Hg< expansion_nt > vec2HE
2D vector in homogeneous coordinates with coordinates as expansions
T dot(const vecng< 3, T > &v1, const vecng< 3, T > &v2)
Computes the dot product of 2 vectors. vecng
Definition vecg.h:916
vecng< 2, expansion_nt > vec2E
vec2 with coordinates as expansions
T geo_sqr(T x)
Gets the square value of a value.
Definition numeric.h:301
vec2Hg< interval_nt > vec2HI
2D vector in homogeneous coordinates with coordinates as intervals.
VEC3 make_vec3(const vec3 &p1, const vec3 &p2)
Creates a vector with coordinates of arbitrary type from two points with double coordinates.
vecng< 2, interval_nt > vec2I
vec2 with coordinates as interval_nt
vecng< 3, Numeric::float64 > vec3
Represents points and vectors in 3d.
Definition geometry.h:65
vec3E make_vec3< vec3E >(const vec3 &p1, const vec3 &p2)
Specialization of make_vec3() for vec3E.
double det(const mat2 &M)
Computes the determinant of a 2x2 matrix.
Definition geometry.h:162
vec3Hg< expansion_nt > vec3HE
3D vector in homogeneous coordinates with coordinates as expansions
vec2E make_vec2< vec2E >(const vec2 &p1, const vec2 &p2)
Specialization of make_vec2() for vec2E.
Sign
Integer constants that represent the sign of a value.
Definition numeric.h:68
vec3Hg< interval_nt > vec3HI
3D vector in homogeneous coordinates with coordinates as intervals.
VEC2 make_vec2(const vec2 &p1, const vec2 &p2)
Creates a vector with coordinates of arbitrary type from two points with double coordinates.
geo_coord_index_t coord_index_t
The type for storing coordinate indices, and iterating on the coordinates of a point.
Definition numeric.h:363
VEC3 triangle_normal(const vec3 &p1, const vec3 &p2, const vec3 &p3)
Computes the normal to a triangle from its three vertices.
vecng< 3, expansion_nt > vec3E
vec3 with coordinates as expansions
Filtered exact predicates for restricted Voronoi diagrams.
Generic implementation of geometric vectors in homogeneous coordinates.